Mechanical Phase Shifters

Aeroflex

A passion for performance.

// DC to 20 GHz ; Low Loss; Linear
// Self Locking - Internal mechanism eliminates the need for a locking nut. Ideal for phase trimming in densely packaged systems with minimum accessibility.
// EDGE LINE designs for ultra fine resolution to 22 GHz
//, COAXIAL designs for broadband low-loss operation to 18 GHz
// STRIPLINE designs for lower cost applications to 12 GHz

General Information

In this section of the catalog, each Phase Shifter is outlined utilizing individual data sheets containing product features, specifications, and outline drawings. These data sheets are preceded by a quick reference guide to help you select the Phase Shifter(s) that fits your needs. The page number for each phase shifter data sheet is given in the quick reference guide.

Aeroflex / Weinschel offers a variety of Mechanical Phase Shifter designs that are ideally suited for delay line applications in optical and RF Networks. These designs provide linear adjustable phase shift in a very small inline coaxial packages with long mechanical cycle life. Models can also be easily adapted to motorized control configurations.

NOTE: EXPRESS Shipment available via www.argosysales.com or 800-542-4457. Check with distributor for current products and stocking quantities.

WEINSCHEL

Phase Shifters...dc to 20 GHz

Model Number	Frequency Range (GHz)	Connector Type	Incremental Phase Shift (Minimum)	Insertion Phase (Typical)	Average Power (Watts)	Maximum Insertion Loss (dB)	Maximum SWR	Page No.	
- 917	dc to 20.0	$\begin{gathered} \text { SMK } \\ (2.92 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 225^{\circ} @ 20 \mathrm{GHz}, \\ 100^{\circ} \text { at } 9 \mathrm{GHz} . \end{gathered}$	890° @ 10 GHz	20	0.8	1.50	169	
$\begin{array}{r} \hline 980-1 \\ -980-2 \\ -980-3 \\ \hline 980-4 \end{array}$	dc to 3.0 dc to 3.0 dc to 7.0 dc to 12.4	SMA SMA SMA SMA	$\begin{gathered} 140^{\circ} @ 3.0 \mathrm{GHz} \\ 340^{\circ} @ 3.0 \mathrm{GHz} \\ 170^{\circ} @ 7.0 \mathrm{GHz} \\ 290^{\circ} @ 12.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 560^{\circ} @ 3.0 \mathrm{GHz} \\ 780^{\circ} @ 3.0 \mathrm{GHz} \\ 700^{\circ} @ 3.0 \mathrm{GHz} \\ 1200^{\circ} @ 12.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} \hline 0.7-1.2^{\star} \\ 1.5-2.0^{\star} \\ 0.5 \\ 1.0 \end{gathered}$	$\begin{aligned} & 1.30 \\ & 1.35 \\ & 1.30 \\ & 1.45 \end{aligned}$	167	
$\begin{array}{r} 980 \mathrm{~K}-1 \\ -980 \mathrm{~K}-2 \\ 980 \mathrm{~K}-3 \\ 980 \mathrm{~K}-4 \end{array}$	dc to 3.0 dc to 3.0 dc to 7.0 dc to 12.4	SMA SMA SMA SMA	$\begin{gathered} 140^{\circ} @ 3.0 \mathrm{GHz} \\ 340^{\circ} @ 3.0 \mathrm{GHz} \\ 170^{\circ} @ 7.0 \mathrm{GHz} \\ 290^{\circ} @ 12.0 \mathrm{GHz} \end{gathered}$	$\begin{array}{r} 560^{\circ} @ 3.0 \mathrm{GHz} \\ 780^{\circ} @ 3.0 \mathrm{GHz} \\ 700^{\circ} @ 3.0 \mathrm{GHz} \\ 1200^{\circ} @ 12.0 \mathrm{GHz} \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{gathered} 0.7-1.2^{*} \\ 1.5-2.0^{*} \\ 0.5 \\ 1.0 \end{gathered}$	$\begin{aligned} & 1.30 \\ & 1.35 \\ & 1.30 \\ & 1.45 \end{aligned}$	167	$\frac{8}{8}$
- 981	dc to 18.0	3.5 mm	$60^{\circ} / \mathrm{GHz}$	$1350 @ 9.0$ GHz	50	$\begin{gathered} 0.5+0.035 \mathrm{f} \text { * } \\ \mathrm{f}=\mathrm{GHz} \end{gathered}$	1.80	170	

* VARIES WITH FREQUENCY.
- EXPRESS Shipment available via www.argosysales.com or 800-542-4457.

Note: Other models may also be available from Express delivery.

Frequently Asked Questions about Phase Shifters . . .

Can you define the Characteristic Insertion Phase for a Mechanical Phase Shifter?

Mechanical phase shifters have an inherent delay / Zero phase shift even when sitting in the minimum position. That phase is the Characteristic Insertion Phase and is provided as a typical value.

Insertion phase is considered the fixed value of the phase shifter and is measured at the minimum setting.

What is Incremental phase shift?

Incremental phase shift is the adjustable amount of phase at a given frequency, over and above the insertion phase.

How is the absolute phase shift calculated for Model 980 series?

The absolute phase shift at any desired frequency is equal to the insertion phase plus the incremental adjustable phase.

The adjustable phase shift is realized in a total rotation of approximately $1 / 4$ turn of the adjustment shaft/knob. (minimum to maximum)

Phase vs. Frequency is a nominally linear response

$$
\begin{aligned}
& \text { Time Delay }=\frac{\Delta \varnothing}{2 \pi f}=\mathrm{pSec} \\
& \Delta \varnothing \text { in radians, } \mathrm{f} \text { in } \mathrm{GHz}
\end{aligned}
$$

As frequency changes, phase shift change linearly, but time delay remains the same.

Model 980
 Coaxial Phase Shifters
 SMA Connectors

Features

// Self Locking - Internal mechanism eliminates the need for a locking nut. Ideal for phase trimming in densely packaged systems with minimum accessibility.
// Available Express Models - 980-2, 980-2K 980-3, 980-4
Other models may be available for Express Delivery.
// Linear - Nominally linear phase over the frequency range.
// Optimized for Wireless OEM Applications.
// New Models with Adjustment Knobs (See Models 980-1K through 980-4K).

Specifications

NOMINAL IMPEDANCE: 50Ω
FREQUENCY RANGE:
Model 980-1 \& 980-1K:
Model 980-2 \& 980-2K:
Model 980-3 \& 980-3K:
Model 980-4 \& 980-4K:
dc to 3.0 GHz dc to 3.0 GHz dc to 7.0 GHz dc to 12.0 GHz
INCREMENTAL PHASE SHIFT (typical):
Model 980-1 \& 980-1K: 140° @ 3.0 GHz
Model 980-2 \& 980-2K: 340° @ 3.0 GHz
Model 980-3 \& 980-3K: 170° @ 7.0 GHz
Model 980-4 \& 980-4K: 290° @ 12.0 GHz
Increamental phase shift is adjustable phase range over and above it's insertion phase
PHASE VS FREQUENCY: Nominally linear response

INSERTION PHASE:

Model 980-1 \& 980-1K:
Model 980-2 \& 980-2K:
Model 980-3 \& 980-3K:
Model 980-4 \& 980-4K:
MAXIMUM INSERTION LOSS (dB):

	Frequency Range (GHz)			
Model No.	1.5	3.0	7.0	12.0
$980-1 \&-1 \mathrm{~K}$	0.70 dB	1.20 dB	---	---
$980-2$ \& -2K	1.50 dB	2.00 dB	---	---
$980-3 \&-3 \mathrm{~K}$	0.50 dB	0.50 dB	0.50 dB	---
$980-4 \&-4 \mathrm{~K}$	1.00 dB	1.00 dB	1.00 dB	1.00 dB

MAXIMUM SWR:					
Frequency Range (GHz)	Model No.				
dc -3	$980-1 / 1 \mathrm{~K}$	$980-2 / 2 \mathrm{~K}$	$980-3 / 3 \mathrm{~K}$	$980-4 / 4 \mathrm{~K}$	
$3-7$	---	1.35	1.30	1.30	
$7-12$	---	--	1.30	1.30	

POWER RATING: 10 watts average
TEMPERATURE RANGE:

Operating:	$-50^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage:	$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CONNECTOR: SMA female connector per MIL-STD-348 interface dimensions - mate nondestructively with MIL-C-39012 connector.
WEIGHT: Models 980-1 \& 980-2: $\quad 65 \mathrm{~g}(2.29 \mathrm{oz})$ Models 980-1K \& 980-2K: Model 980-3 \& 980-4: Model 980-3K \& 980-4K:

PHySICAL DIMENSIONS:

MODEL 980-1

MODEL 980-1K

MODEL 980-2

MODELS 980-3 \& 980-4

NOTE: All dimensions are given in mm (inches) and are maximum, unless otherwise specified.

Model 917
Miniature In-Line Phase Shifter
Ruggedized 2.92 mm Connector

Features
// Self Locking - Internal mechanism eliminates the need for a locking nut. Ideal for phase trimming in densely packaged systems with minimum accessibility.
// Linear - Provides a linear adjustable phase shift to 20 GHz in a very small in-line coaxial package.

Specifications

NOMINAL IMPEDANCE: 50Ω
FREQUENCY RANGE: dc to 20.0 GHz
INCREMENTAL PHASE SHIFT: Adjustable to 225° @ $20 \mathrm{GHz} ; 100^{\circ}$ at 9 GHz (typical).
RESOLUTION: 0.5° per turn per GHz, typical
(Adjustment shaft has 20 turns for full range).
INSERTION PHASE: 890° @ 10 GHz (Typical)
PHASE VS FREQUENCY: Nominally linear response INSERTION LOSS: 0.8 dB maximum
(0.5 dB typical @ 20 GHz)

| MAXIMUM SWR: |
| :--- | :---: |
| Frequency Range (GHz) SWR
 $\mathrm{dc}-20$ 1.5 |

POWER RATING: 20 watts average
TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

CONNECTOR: SMK (2.92 mm) connector compatible with SMA, 3.5 mm , SMK and other 2.92 mm connectors. Available connector options are:

Connector Options	
1	Type/Description
2	SMK, Female
2	SMK, Male

WEIGHT: 45 g (1.6 oz)
PHYSICAL DIMENSIONS:

CONN TYPE	DIM A
Female	$19.81(0.78)$
Male	$21.34(0.84)$

NOTE: All dimensions are given in mm (inches) and are nominal ± 0.5 (0.02), unless otherwise specified.

MODEL NUMBER DESCRIPTION:
Example:

Model 981
Coaxial Phase Shifter
3.5mm Connectors

Features

// Broadband Frequency Coverage: Operates from dc to 18 GHz , usable to 20 GHz
// Ideally suited for delay line applications in optical and RF Networks.
// Easily adapts to motorized control configurations.
/// Designed for long mechanical cycle life.
dc to 18.0 GHz 50 Watts
\checkmark RoHS

Specifications
NOMINAL IMPEDANCE: 50Ω
FREQUENCY RANGE: dc to 18.0 GHz
INCREMENTAL PHASE SHIFT (Typical): $60^{\circ} / \mathrm{GHz}$
INSERTION PHASE: $\quad 1350^{\circ} @ 9.0 \mathrm{GHz}$ (typical)
INSERTION LOSS (dB): $0.5+0.035$ f(GHz)
MAXIMUM SWR:

Frequency Range (GHz)	SWR
dc -10	1.6
$10-18$	1.8

POWER RATING: 50 watts average, 1 kW peak TEMPERATURE RANGE: $-50^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
CONNECTOR: 3.5 mm female connectors compatible with 3.5 mm , SMA, SMK and other 2.92 mm connectors.

WEIGHT: 80 g (2.84 oz)

PHYSICAL DIMENSIONS:

NOTE: All dimensions are given in mm (inches) and are maximum unless otherwise specified.

