metrology is our business, accuracy is our standard





# **Technical Specification**



www.amtest-tm.ro

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro 1

**Departament Vanzari:** +40 73 071 4926 Iudmila.valcea@amtest-tm.ro



# Content

| Content                                |
|----------------------------------------|
| 1. Equipment Appearance:               |
| 2.Equipment Information:               |
| 2.1 Application:                       |
| 3.Technical data:                      |
| 3.1Basic information:                  |
| 3.2 Temperature:                       |
| 3.3 Humidity:                          |
| 3.4 Sample limitation and test method: |
| 4.Equipment structure:                 |
| 5.Temperature and Humidity System:     |
| 6.Refrigerant System:                  |
| 7.Control System:                      |
| 8.Main Sapre Parts:                    |
| 9.Safty Devices:10                     |
| 10.Ambient Environment:                |

www.amtest-tm.ro

+40 21 414 0401 office@amtest-tm.ro **Departament Vanzari:** +40 73 071 4926 Iudmila.valcea@amtest-tm.rc



# 1. Equipment Appearance (For reference)

## 2. Product description

## **2.1 Product applications**

The constant temperature and humidity test chamber is widely used in scientific research, research institutes, quality inspection institutes and other industries to do warm and humid heat tests of electronic and electrical products, materials, parts, equipment, etc., alternating heat test and constant temperature test, etc. Also could do high and low temperature routine tests, low temperature storage, in order to evaluate the performance of the sample under given environmental conditions.

## **2.2 Product Positioning**

Apply to aerospace, aviation, electronics, automotive, battery and other products and quality inspection institutes, research institutes, universities and other test units, providing virtual space to simulate the real environment, verify product inspection, research and development results, test chamber is a powerful assistant to shorten the development cycle and improve product quality and reliability.

## 3. Technical indicators

#### 3.1 Basic information

| Model                         | SMC-225-CC                                    |
|-------------------------------|-----------------------------------------------|
| Temperature control range     | -40°C~150°C                                   |
| Humidity control range        | 20%RH~98%RH                                   |
| Condenser                     | Air-cooling                                   |
| Refrigerant                   | R449A                                         |
| Interior size(mm)W*H*D        | 600x750x500                                   |
| Outer size(mm) W*H*D          | 800x1870x1315                                 |
| Volume(L)                     | 225L                                          |
| Operating ambient temperature | $+5^{\circ}C \sim 35^{\circ}C$                |
| Power supply                  | 220V AC, 50Hz single phase                    |
| Controller                    | Sanwood programmable controller with USB port |

3

www.amtest-tm.ro

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro **Departament Vanzari:** +40 73 071 4926 ludmila.valcea@amtest-tm.ro



# **3.2 Temperature test**

| Temperature range       | -40°C∼150°C                                                                  |
|-------------------------|------------------------------------------------------------------------------|
| Temperature fluctuation | ≤±0.5°C                                                                      |
| Temperature deviation   | l≤±2°C                                                                       |
| Temperature uniformity  | ≤1.5°C                                                                       |
| Temperature resolution  | 0.01°C                                                                       |
| Heating rate            | $25^{\circ}C \rightarrow +100^{\circ}C$ /within 25 mins (with standard load) |
| Cooling rate            | 150.0°C~25.0°C Cooling rate 2.0~3.0°C/min                                    |
|                         | 25.0°C~-40.0°C Cooling rate 1.0~2.0°C/min                                    |
| Standard load           | 20kg aluminum sheet, 200W heat load                                          |



# **3.3 Humidity test**

| Humidity range       | 20%R.H $\sim$ 98%R.H when temperature from 20°C ~ 85°C    |
|----------------------|-----------------------------------------------------------|
|                      | (in above map of blue area)                               |
| Humidity deviation   | $\leq \pm 2\%$ R.H                                        |
| Humidity fluctuation | ±2%R.H                                                    |
| Humidity resolution  | 0.1%R.H                                                   |
| Verify conditions    | 1) Condition 1: -40°C±2 °C                                |
|                      | 2) Condition 2: 22°C±2 °C, 95%±2%RH                       |
|                      | 3) Condition 3: 105°C±2 °C                                |
|                      | 4) Condition 4: 22°C±2 °C, 95%±2%RH                       |
|                      | 5) Change over time from condition 1 to 2, condition 2 to |

4

#### www.amtest-tm.ro

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro **Departament Vanzari:** +40 73 071 4926 Iudmila.valcea@amtest-tm.ro



# condition 3, condition 3 to 4 within $60\pm5$ minutes.

# 3.4 Sample limit and test method

| Prohibitions | Testing and storage of explosive, flammable, volatile materials         |
|--------------|-------------------------------------------------------------------------|
|              | Testing and storage of corrosive substances                             |
|              | Testing or storage of biological samples                                |
|              | Test and storage of strong electromagnetic emission source samples      |
|              | Testing and storage of radioactive material samples                     |
|              | Testing and storage of samples of highly toxic substances               |
|              | Testing and storage of samples that may produce highly toxic substances |
|              | during testing or storage                                               |
| Test         | GB/2423.1-2008 (IEC60068-2-1:2007) low temperature test method AB.      |
| standard     | GB/T5170.5-2008 damp heat test equipment.                               |
|              | GJB150.4 (MIL-STD-810D) low temperature test method.                    |
|              | GB2423.3-93 (IEC68-2-3) Test Ca: Constant damp heat test method.        |
|              | GB2423.4-93 (IEC68-2-30) Test Db: Alternating Damp Heat Test Method     |

# 4. Machine structure

|                     | -                                                                     |
|---------------------|-----------------------------------------------------------------------|
| Structure           | One piece assembled type                                              |
| Inner chamber       | SUS#304 heat-resistant and cold-resistant stainless steel plate       |
| material            | (1.2mm); full seamless welding                                        |
| Internal structure  | SUS304 (2mm) stainless steel reinforcement                            |
| strengthening       |                                                                       |
| Outer chamber       | Electrolytic steel sheet 1.2mm, pickling phosphating high-grade       |
| material            | powder baking varnish                                                 |
| Insulation material | Germany Bayer refractory grade high strength PU polyurethane          |
|                     | foam insulation material 100mm and ultra-fine glass fiber 10mm        |
| Door edge           | Double-layer high-tension silicone rubber seal, temperature resistant |
|                     | -90~180°C, lifespan up to 15 years                                    |
| Observation         | multi-layer hollow tempered glass belt with automatic defrosting      |
| window              | function, which can guarantee the frost-free and condensation of the  |
|                     | glass surface during any test. Internal lighting over the window.     |
| Sample rack         | Stainless steel sample holder 2 units, height is adjustable           |
|                     | load-bearing (uniform): 20kg/unit                                     |
| Moving and          | 4 high load-bearing pulleys and PU horizontal angle wheels at the     |
| position mode       | bottom for moving and fixing the equipment                            |
| Cable port          | Two cable ports, on the chamber's left and right side,φ100mm.         |
|                     | with screwed plastic cover, silicone plug                             |
| Floor bearing       | $\leq 100 \text{kg/m2}$ (uniform load)                                |

#### www.amtest-tm.ro

5

**Office:** Bucuresti, Romania Cara Anghel 9. bl. C56. ap.8

+40 21 414 0401 office@amtest-tm.rc **Departament Vanzari:** +40 73 071 4926 udmila.valcea@amtest-tm.ro



| Circulating motorStainless steel extended shaft circulating motor ensures long-term<br>operation and sufficient air volume operationCirculating windThe multi-wing centrifugal circulating wind wheel is used to<br>strengthen the shaft and aluminum alloy to make high and low<br>temperature resistant rotating blades, so as to achieve forced<br>convection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as a<br>double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage. |                      |                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|
| operation and sufficient air volume operationCirculating windThe multi-wing centrifugal circulating wind wheel is used towheelstrengthen the shaft and aluminum alloy to make high and lowtemperature resistant rotating blades, so as to achieve forcedconvection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as adouble air duct, which is connected to the studio but isolated. Thewind path from up to down and returning. The partition plate isformed by cold-bending processing of high-quality stainless steelplates, and adjustable louvers are used at the air outlet. Indirectheater, saturated humid air inlet, refrigeration dehumidificationevaporator and circulating blast wind wheel are arranged in thetemperature regulation air passage.                                                                                                                           | Circulating motor    | Stainless steel extended shaft circulating motor ensures long-term  |
| Circulating wind<br>wheelThe multi-wing centrifugal circulating wind wheel is used to<br>strengthen the shaft and aluminum alloy to make high and low<br>temperature resistant rotating blades, so as to achieve forced<br>convection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as a<br>double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                            |                      | operation and sufficient air volume operation                       |
| wheelstrengthen the shaft and aluminum alloy to make high and low<br>temperature resistant rotating blades, so as to achieve forced<br>convection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as a<br>double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                | Circulating wind     | The multi-wing centrifugal circulating wind wheel is used to        |
| temperature resistant rotating blades, so as to achieve forced<br>convection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as a<br>double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                     | wheel                | strengthen the shaft and aluminum alloy to make high and low        |
| convection and effectively avoid looping dead angles.Circulating air ductThe temperature-adjusting and conditioned air duct is designed as a<br>double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                       |                      | temperature resistant rotating blades, so as to achieve forced      |
| Circulating air duct The temperature-adjusting and conditioned air duct is designed as a double air duct, which is connected to the studio but isolated. The wind path from up to down and returning. The partition plate is formed by cold-bending processing of high-quality stainless steel plates, and adjustable louvers are used at the air outlet. Indirect heater, saturated humid air inlet, refrigeration dehumidification evaporator and circulating blast wind wheel are arranged in the temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | convection and effectively avoid looping dead angles.               |
| double air duct, which is connected to the studio but isolated. The<br>wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Circulating air duct | The temperature-adjusting and conditioned air duct is designed as a |
| wind path from up to down and returning. The partition plate is<br>formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | double air duct, which is connected to the studio but isolated. The |
| formed by cold-bending processing of high-quality stainless steel<br>plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | wind path from up to down and returning. The partition plate is     |
| plates, and adjustable louvers are used at the air outlet. Indirect<br>heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | formed by cold-bending processing of high-quality stainless steel   |
| heater, saturated humid air inlet, refrigeration dehumidification<br>evaporator and circulating blast wind wheel are arranged in the<br>temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | plates, and adjustable louvers are used at the air outlet. Indirect |
| evaporator and circulating blast wind wheel are arranged in the temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | heater, saturated humid air inlet, refrigeration dehumidification   |
| temperature regulation air passage.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | evaporator and circulating blast wind wheel are arranged in the     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | temperature regulation air passage.                                 |

# 5. System introduction

| Heating wire   | High-quality explosion-proof nickel-chromium alloy heating wire (high        |
|----------------|------------------------------------------------------------------------------|
|                | resistivity, small temperature coefficient of resistance, small              |
|                | deformation at high temperature and not easy to embrittlement, self-         |
|                | heating temperature up to 1000-1500°C, long service life) rapid heat         |
|                | exchange, no hysteresis                                                      |
| Heating wire   | The solid state relay is used as a heating actuator, and there is no large   |
| control        | current fluctuation and impact phenomenon, and the operation is stable.      |
| Heating wire   | The heating wire is provided with anti-dry protection to prevent the         |
| protection     | heater from continuously burning after the circulation fan stops for some    |
|                | reason, causing the heater itself to burn out or other accidents.            |
| Humidification | Steam humidification method: using electronic parallel mode micro-           |
| mode           | motion humidification system                                                 |
| Humidifying    | All stainless steel embedded humidification tube with anti-dry explosion     |
| heating pipe   | protection protector                                                         |
| Humidification | Humidification is rapid, saves water, saves electricity, and allows test     |
| system         | products to heat up. The humidification and dehumidification system are      |
| advantage      | completely independent, no need for extra drainage, faster than              |
|                | traditional surface humidification (water tray), high control precision, no  |
|                | scale pollution such as scale and scale, good low humidity performance,      |
|                | water level observation window, and easy cleaning                            |
| water for      | Distilled water, pure water or deionized water (resistivity greater than     |
| humidity       | 500 $\Omega \cdot m$ ) to be used for humidity system (provided by the user) |
| Water storage  | Drawer type water tank 1 unit, 15L, located in front of the machine,         |

www.amtest-tm.ro

6

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro **Departament Vanzari:** +40 73 071 4926 udmila.valcea@amtest-tm.rc



| device | under the door. |
|--------|-----------------|
|        |                 |

# 6. Refrigeration System

| 0              |                                                                           |
|----------------|---------------------------------------------------------------------------|
| Compressor     | France Tecumseh fully enclosed compressor                                 |
| Evaporator     | High-efficiency components adopts a slope type evaporator (AC&R           |
|                | compound spoiler aluminum fins)                                           |
| Condenser      | Air-cooled system for equipment easy movement, etc.                       |
| Heat exchanger | SWEP plate type refrigerant cold and heat exchange design, making         |
|                | higher efficiency compared with traditional internal spiral               |
| Energy-saving  | Adopting throttle electronic expansion valve                              |
| device         | 1. The active control of the refrigeration system is realized, and the    |
|                | fixed proportional adjustment of the original thermal expansion valve     |
|                | is not controllable. The output can be adjusted in advance and            |
|                | optimized for different modes and operating conditions.                   |
|                | 2. Due to the cyclic control feedback of the electronic expansion valve,  |
|                | the front end is a temperature-plus-pressure dual-sensor high-response    |
|                | direct control, which can provide the best evaporator liquid supply, so   |
|                | that the refrigeration system can achieve excellent cooling capacity in a |
|                | wider working range. Output.                                              |
|                | 3. Energy saving: the full range of electronic expansion valve self-      |
|                | adjustment + active adaptation to adjust the cooling capacity output,     |
|                | making the system more energy efficient.                                  |
|                | \$ 67                                                                     |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                |                                                                           |
|                | 4. Energy-saving design: Adopting PID + PWM principle of VRF              |
|                | (refrigerant flow control) technology to achieve low-temperature          |
|                | energy-saving operation (electronic expansion valve according to          |
|                | thermal energy conditions refrigerant flow servo control technology)      |
|                | low temperature working state, the heater does not participate in the     |
|                | work, through PID + The PWM regulates the flow rate and flow              |

www.amtest-tm.ro

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro 7

**Departament Vanzari:** +40 73 071 4926 Iudmila.valcea@amtest-tm.ro



|             | direction of the refrigerant, and regulates the three-way flow of the     |
|-------------|---------------------------------------------------------------------------|
|             | refrigerant pipe, the cold bypass pipe, and the hot bypass pipe to        |
|             | achieve automatic constant temperature to the working chamber. This       |
|             | method can reduce energy consumption by 30% under low temperature         |
|             | conditions. The technology is based on Danish Danfoss' ETS series of      |
|             | electronic expansion valves, which can be used to smoothly adjust the     |
|             | cooling capacity for different cooling capacity requirements, that is, to |
|             | achieve the compressor cooling capacity adjustment when different         |
|             | cooling rate requirements are met.                                        |
| Refrigerant | Original American DuPont Environmental Refrigerant R449A                  |

# 7. Control system

| Controller          | Sanwood program controller                                       |
|---------------------|------------------------------------------------------------------|
| Display             | 640x480 dot matrix, 5.7 inch TFT color LCD display               |
| Running mode        | Program mode, fixed value method                                 |
| Setting mode        | Chinese and English menu (free choice), touch screen input       |
| Program capacity    | Editable program                                                 |
|                     | Quantity: Max 120                                                |
|                     | Steps: Max 100                                                   |
|                     | Number of cycles: Max 999                                        |
|                     | Program can be linked (link program serial number can be         |
|                     | selected)                                                        |
| Setting range       | Temperature: Adjust according to the operating temperature range |
|                     | of the equipment (upper limit +5°C, lower limit -5°C)            |
|                     | Humidity: $(0 \sim 100)$ % RH (temperature and humidity test     |
|                     | equipment)                                                       |
| Display resolution  | Temperature: 0.01°C                                              |
|                     | Time: 0.01min                                                    |
|                     | Humidity: 0.1% RH (temperature and humidity test equipment)      |
| Communication       | Ethernet, RS485, RS232 interface;                                |
| function (standard) | choose one from above three options;                             |
| Control mode        | BTC balance temperature control mode + DCC (Intelligent          |
|                     | Cooling Control) + DEC (Smart Electrical Control) (Temperature   |
|                     | Test Equipment)                                                  |
|                     | BTHC balance temperature regulation and humidity control mode    |
|                     | + DCC (smart cooling capacity control) + DEC (smart electrical   |
|                     | control) (temperature and humidity test equipment)               |
| Curve recording     | With battery-protected RAM, it can save the set value, sampling  |
| function            | value and sampling time of the device; the maximum recording     |

www.amtest-tm.ro

8

Office: Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm. **Departament Vanzari:** +40 73 071 4926 Iudmila.valcea@amtest-tm.rc



|                     | time is 350 days (when the sampling period is 1.5min)        |  |
|---------------------|--------------------------------------------------------------|--|
| Subsidiary function | Fault alarm and cause, processing prompt function            |  |
|                     | Power failure protection                                     |  |
|                     | Upper and lower temperature protection                       |  |
|                     | Calendar timing function (automatic start and automatic stop |  |
|                     | operation)                                                   |  |
|                     | Self-diagnostic function                                     |  |

# 8. Main parts

| Name                        | Brand                     | Note                              |
|-----------------------------|---------------------------|-----------------------------------|
| Controller                  | Sanwood                   | SA <mark>\</mark> ₩OODΞπ          |
| Compressors                 | France Tecumseh           | 🧕 Tecumseh                        |
| Oil separator               | Emerson                   | EMERSON                           |
| Heat exchanger              | SANWOOD customized        | SA <mark>\</mark> ₩OOD <b>Ξ</b> π |
| Condenser                   | SANWOOD customized        | SA <mark>\</mark> ₩OODΞπ          |
| Evaporator                  | SANWOOD customized        | SAℕWOOD三市                         |
| Drying filter               | Denmark Danfoss           | Danfoss                           |
| Non-return valve            | Denmark Danfoss           | Danfoss                           |
| Solenoid valve              | Denmark Danfoss           | Danfoss                           |
| Condensing pressure switch  | Denmark Danfoss           | Danfoss                           |
| Leakage protection switch   | France Schneider          | Schneider                         |
| AC relay                    | France Schneider          | Schneider                         |
| Thermal relay               | France Schneider          | Schneider                         |
| phase rotation relay        | Switzerland Carlo Gavazzi | _//∧LŮ.佳牙                         |
| solid-state relay           | Switzerland Carlo Gavazzi | <b>_//\L₽.</b> 佳牙                 |
| Temperature humidity sensor | Taiwan Thermoway          |                                   |
| Circulating motor           | Taiwan Yuzheng            |                                   |
| Over temperature protection | South Korea RAINBOW       |                                   |

www.amtest-tm.ro

**omce:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.ro 9

**Departament Vanzari:** +40 73 071 4926 ludmila.valcea@amtest-tm.rc



# 9. Equipment safety protection device

| Refrigeration | Compressor over-pressure protection                        |
|---------------|------------------------------------------------------------|
| system        | Compressor motor overheat protection                       |
|               | Over current protection of compressor motor                |
| Humidifying   | Humidification tube dry burning protection                 |
| system        | Abnormal water supply protection                           |
|               | Abnormal drainage protection                               |
|               | Water shortage abnormal protection                         |
| Test chamber  | Adjustable test product over temperature protection        |
| protection    | Test space temperature fuse protection                     |
|               | Air conditioning channel limit over temperature protection |
|               | Ultra-high temperature protection inside the controller    |
|               | Fan motor overheat protection                              |
|               | Chamber inside and outside pressure balance protection     |
| Other         | Total power phase sequence and phase loss protection       |
| protection    | Whole machine leakage protection                           |
|               | Load short circuit protection                              |

## **10. Equipment safe use conditions**

| Site         | Leveled ground, good ventilation, no flammable, explosive or                                            |
|--------------|---------------------------------------------------------------------------------------------------------|
|              | aggressive gas and powder                                                                               |
|              | No strong electromagnetic radiation source                                                              |
|              | With drainage near the machine (within 2 meters)                                                        |
|              | Ground load-bearing capacity: not less than 800kg/m2                                                    |
|              | Leave space around the machine for maintenance                                                          |
|              | A : not less than 30cm                                                                                  |
|              | B : not less than 50cm                                                                                  |
|              | C : not less than 70cm                                                                                  |
|              | D : not less than 90cm                                                                                  |
| Power supply | Voltage allowable fluctuation range: AC (1±10%) 220V or                                                 |
|              | AC (1±10%) 380V                                                                                         |
|              | Frequency allowable fluctuation range: $(1 \pm 1\%)$ 50Hz                                               |
|              | Protective earthing wire grounding resistance is less than $4\Omega$                                    |
|              | Users are required to configure a device with a considerable capacity of                                |
|              | air or power switch at the installation site, and this switch must be used exclusively for this device. |

www.amtest-tm.ro

10

**Office:** Bucuresti, Romania Cara Anghel 9. bl. C56. ap.8

+40 21 414 0401 office@amtest-tm.ro **Departament Vanzari:** +40 73 071 4926 ludmila.valcea@amtest-tm.rc



| Requirements | When the equipment is not working, the ambient temperature should be      |
|--------------|---------------------------------------------------------------------------|
| for storage  | kept within $0 \sim +35^{\circ}$ C (without freezing)                     |
| environment  | When the ambient temperature is lower than 0 °C, the water remaining      |
|              | in the equipment should be drained to prevent the water in the pipeline   |
|              | from freezing and damaging the pipeline.                                  |
| Other        | Opening the door of the test chamber during the test will cause           |
|              | temperature or humidity fluctuations inside the box                       |
|              | If the door is opened several times during the test or the door is opened |
|              | for a long time or the test sample emits moisture, the heat exchanger of  |
|              | the refrigeration system may freeze and may not work properly.            |

## 11. Quality assurance

**Warranty**: 3-year warranty included, calculated from the date of production. Extension warranty is negotiable.

#### After-sale service:

1) the equipment is free of charge during the warranty period, and the end user is in compliance with the conditions of custody, use and installation rules.

2) Due to the failure caused by the quality, design defects and/or core components of the chamber, AMTEST-TM România will provide the technical support and solutions until the chamber runs well. In-site service and consumable components are not included.

3) Natural disasters, abnormal power, improper use, damage caused by improper maintenance, etc are not in the warranty scope.

#### **Documents and accessories:**

**Technical information**: product certificate, instruction manual, warranty card and etc.; **Packaging and shipping methods** 

**Packing**: Shipping container that meets the requirements of QB/BWD008-2001 **Mode of transport**: by Sea, rail or land.

**Training**: Your operator can operate the machine skillfully according to the manufacturer manual. Video will be provided if required.

**Installation**: One piece assembled machine.

**Maintenance**: AMTEST-TM România will do the maintenance surcharge according to the manufacturer guidance.

Romania +40 2 21 9, bl. C56, ap.8 office **Departament Vanzari:** +40 73 071 4926 ludmila.valcea@amtest-tm.





#### www.a

**Office:** Bucuresti, Romania Cara Anghel 9, bl. C56, ap.8

+40 21 414 0401 office@amtest-tm.rc **Departament Vanzari:** +40 73 071 4926 ludmila.valcea@amtest-tm.ro