

Welcome to Gems Sensors
 Liquid Level and Flow Catalogue

Gems is the preferred fluid sensor supplier of OEMs in hundreds of different industries for three very important reasons:

1. We bring an innovative design, application and problem-solving approach to meet your needs;
2. We provide exceptional service to our customers;
3. We offer the most comprehensive selection of fluid sensing components.

We believe that you can make a better sensor decision when you have a true choice of sensing technologies. With GEMS Prducts you are not forced to "accommodate" a sensor into your application - we have the selection to allow an ideal sensor/capability match for all your specific requirements.

GEMS offers technologies ranging from solid-state, electro-optic and conductivity sensors to magnetically actuated reed switches, from chemical vapour deposition (CVD) strain gauges to hall-effect sensors. Five decades of application experience provides us with the knowledge of how best to put these technologies to work for you.

For the last 50 years we have listened and responded to our customer needs, helping our OEM customers to maintain a competitive edge and providing end users with reliable solutions to the most demanding level and flow measuring problems.

Whether you contact us first or last, you'll find your sensor solutions at GEMS! Please call, or visit us online, to find out why GEMS is the supplier-of-choice for key OEMs around the world.

Visit us at: www.gems-sensors.co.uk or www.gemssensors.com

The fastest way to more information:

...just complete the form below and fax it to your nearest sales office (address on back page)
From:
\qquad
\qquad
\qquad
\qquad and I would like to talk with one of your sales engineers. Please call me (date/time)

Please send me more information on:GEMS Magnetic Level IndicatorsGEMS Pressure TransducersGEMS Diptape IndicatorsGEMS Pressure switches \square GEMS Tank Level Indicating Systems TLI

Operating Principle of Gems Level Switches

General Operating Principle

GEMS Level Switches operate on a direct, simple principle. In most models, a float encircling a stationary stem is equipped with powerful, permanent magnets. As the float rises or lowers with liquid level, the magnetic field generated from within the float actuates a hermetically sealed, magnetic reed switch mounted within the stem. The stem is made of non-magnetic metals or rugged, engineered plastics. When mounted vertically, this basic design provides a consistent accuracy of $\pm 2 \mathrm{~mm}$. Multi-station versions use a separate reed switch for each level point being monitored.

Side-mounted units use different actuation methods because of their horizontal attitude. The basic principle, however, is the same: as a direct result of rising or falling liquid, a magnetic field is moved into the proximity of a reed switch, causing its actuation.

Reed Switch Reliability

The durable construction, of these reed switch designs, ensures long trouble-free service. Because the effects of shock, wear and vibration are minimised, these hermetically sealed switches provide precise repeatability with no more than 1% deviation. The switch actuation points remain constant over the life of the unit. See "Reed Switch Protection" on page 7 for information on extending the life of GEMS Level Switches.

Acceptance and Approvals

Various Civil, Military, Naval and Coast Guard approvals have been attained for special products. Some switches have been developed for applications in ships and have passed shock and vibration tests, seismic shock tests and other quality tests. Please ask for further details.

Contact Sales Office for detailed ordering information.
Approvals available on selected products:

Sensors
$\begin{array}{c}\text { LEVEL } \\ \text { SWITCHES }\end{array}$

Reed Switch Protection

The hermetically-sealed reed switch used in GEMS level switches are extremely rugged and designed to operate reliably for many years - 2 million cycles under ideal conditions. To achieve the maximum service life, reed switches benefit from protected electrical supply.

IMPORTANT:

D Don't be misled by the resistive ratings of the switches. Most applications involve inductive loads.

Don't be mislead by the wattage ratings of loads. Low wattage loads are often high inductive devices, making contact protection very important.

Contact Protection Requirements

When switching inductive loads such as relays, solenoids and transformers, reed switch contacts require protection in order to ensure long, dependable life. When current is interrupted, the inductance or electrical inertia of the load generates a large high frequency voltage, which appears across the switch contacts. If the voltage is large enough, it can break down the medium in the gap between them, making a conductive path. This phenomenon, called "arcing," is the spark you see. Arcing can cause the contacts to burn, weld together or stick; thus, giving unreliable performance. The purpose of protection circuits is to prevent arcing, by shorting this voltage through an alternate path.

Recommended Protection

D.C.

A 1N4004 diode (or equivalent) connected cathode-to-positive, as shown in Figure 1, is recommended. The diode does not conduct when the load is energised, but conducts and shorts out the generated voltage when the switch opens. The generated voltage always acts in series with the applied voltage.

A.C.

A resistor and capacitor, connected in parallel with the switch, as shown in Figure 2, is recommended. The capacitor is a high impedance to 60 hertz, but is essentially a short circuit to high frequencies of generated voltages.
Transient suppressors or varistors may also be used to dissipate the transient and protect the switch contacts.

Notes:

1. Don't be misled by low voltage $\leq 10 \mathrm{~V}$, low current $\leq \mathrm{MA}$ type of loads. These loads may require special gold plating on contact surfaces to operate reliably at these low voltage/low current levels. For long term reliable low current switching action, Gems 20VA switches should be operated at a minimum of 12 V to assure contact make; e.g., break through an oxide film which may form over long periods of time.
2. Capacitive loads and lamp loads - Inrush currents of up to 15 times the normal current can occur with inductive loads, especially with lamp loads. In the worst case, inductive loads can cause welding or destruction of the reed switch contacts. Therefore, a protection resistor should be connected in series to the reed switch to limit the current, when switching capacitative loads, filament lamps and other circuits via long cables (fig. 3).
3. The following rating may be used for selection.

$$
V_{\text {Rms }}=130 \text { volts } \quad \text { Energy }=30-50 \text { joules } \quad \text { Peak Amps }=4000-6000
$$

The dependable reed switch is at the heart of each level switch shown in this catalogue.

D.C. Contact Protection (Drain the Load)

Figure 2
A.C. Contact Protection (Protect the Switch)

Solid State Level Sensors - CLS-1200

CLS-1200 Series Conductance Type Level Sensors are the Modern Solution for Nightmare Fluid Monitoring Applications

Vo Moving Parts
Integral Electronic Switching

- 172 bar Max. Pressure
, $125^{\circ} \mathrm{C}$ Max. Temperature
Built-In Slosh Dampening
Offering unequaled dependability and longevity in a wide range of demanding fluid monitoring applications, CLS-1200, solid-state sensors have no moving parts and are free from maintenance or calibration requirements. Built-in switching electronics withstand $125^{\circ} \mathrm{C}$ temperatures eliminating the need for a remotely mounted controller, reducing time and cost associated with installation.
High-pressure, leak-free operation is ensured by an exclusive fused ceramic sealing
process that eliminates o-rings and compression fittings at the sensor tip. Rugged,
CLS-1200 sensors feature built-in protection against reverse polarity, overvoltage and
load-dump to deliver long-term reliability.

Typical Applications

Coolant level monitoring in radiators \& expansion reservoirs
D Waste water level monitoring
D Leak detection

- Water level monitoring in oil separators
- Steam boilers

Specifications	
Operating \& storage temperature Process fluid \& electronics	-40 to $125^{\circ} \mathrm{C}$
Input voltage	8-32 VDC
Signal output options	A: Wet Sink (open collector output, ON in liquid) B: Dry Sink (open collector output, ON in air)
Maximum load capability* Outputs A \& B	250 mA
Outputs C \& D	0.5 mA
Maximum pressure*	170 bar
Slosh dampening	5 ± 2 Seconds (standard)
Sensitivity	10,000 Ohms (fluid resistance)
Wetted materials	330 SS, 304L SS and Ceramic
Moisture entry protection rating	IP67 (NEMA 6 equivalent)
Mounting	1/4" NPT
Electrical termination	Lead Wires, 18 AWG, Polymeric, 0.6 m Extended
Approvals	CE
Additional circuit protection	Reverse Voltage (-45 VDC for 1 hr) Over Voltage (80 VDC for 2 min) Load Dump (123 VDC pulse every 15 sec for 2 hrs)

* Applicable across entire operating temperature range. Designed for use only in electrically conductive liquids having a resistance of $10,000 \Omega$ or less.

PATENT PENDING

Dimensions (in mm)

When a single potential (DC voltage) is applied to a probe submerged in a conductive liquid, the metal from that probe will be removed in a chemical process known as electrolysis.

Gems CLS-1200 Sensor

CLS-1200 liquid level sensors use an alternativing potential configuration (AC voltage or frequently reversing DC voltage) which allows it to perform flawlessly over time without degradation. When an alternating potential is applied, the metal removed in the first half cycle is replaced in the second half cycle resulting in virtually zero probe material loss.

How to Order

Select a Part Number based on Thread and Output desired.

Output	Thread	Description Code	Part No.
ON in Liquid	NPT	CLS1200NPTA05	$\mathbf{1 9 5 2 2 3}$
Wet Sink (open collect for output)	BSP	CLS1200BSPA05	$\mathbf{1 9 5 2 2 7}$
ON in Air	NPT	CLS1200NPTB05	$\mathbf{1 9 5 2 2 4}$
Dry Sink (open collect for output)	BSP	CLS1200BSPB05	$\mathbf{1 9 5 2 2 8}$

(wet = NO, Dry = NC)

Notes:

CLS-1200 with G1/4 thread fitting will require face to face seal. We offer Industrial Bonded Seals Part Number 499207-0002 (Viton in cadmium plated steel) suitable for temperatures up to $200^{\circ} \mathrm{C}$.
For alternatives, and/or material compatability, contact Sales Office.

Operating Principle

Gems CLS-1200 liquid level sensors are solid-state devices designed to detect the presence or absence of an electrically conductive liquid. Each sensor contains integral, high-temperaturerated electronics that generate an alternating voltage to the stainless steel tip. The presence of an electrically conductive liquid completes the circuit which, in turn, changes the condition of the transistor output. Output options vary and can be used to actuate relays, indicator lights or LEDs, as well as to interface with CMOS/TTL logic, PLCs or microprocessors.

Typical Wiring Diagrams

Output Options A \& B (Wet or Dry Sink)

Notes:

1. Sensor housing is internally grounded, black (negative) to case.
2. Inductive loads must be diode suppressed.
3. External load supply (40 VDC, max.) may be used as long as it is using the same system ground.
\qquad

Electro-Optic Level Sensors

Let GEMS keep and 'Eye" on your Liquid Level:
Compact, Electro-Optic Liquid Level Switches
and Controllers
, Small size
Economically priced
Built in, solid-state electronics

- No moving parts

Triangular prism, not susceptable to droplets

- Simple, one-unit installation

ELS Series Level Switches are low cost, compact, optical level sensors with built-
in switching electronics. With no moving parts, these small units are ideal for a variety of point level sensing applications - especially where dependability and economy are a must.
The sensor offers $\pm 1 \mathrm{~mm}$ repeatability and broad liquid compatibility. They are not
recommended for use in any liquid that crystallises or leaves a solid residue.
Level switches are suitable for high, low or intermediate level detection in
practically any tank, large or small. Installation is simple and quick through the
tank top, bottom or side Solid state switching ensures dependability over long
service life.
Typical Applications

- Medical laboratory

Food and beverage systems

- Pharmaceuticals
- Petrochemicals
- Leak detection

Dydraulic reservoirs

- Machine tools

The electro-optical sensor contains an infrared LED and a light receiver. Light from the LED is directed into a prism which forms the tip of the sensor.
With no liquid present, light from the LED is reflected within the prism to the receiver. When rising liquid immerses the prism, the light is refracted out into the liquid, leaving little or no light to reach the receiver. Sensing this change, the receiver actuates electronic switching within the unit to operate an external alarm or control circuit.

10

* These switches are not for use in freezing liquid
** Not suitable for long term immersion in water

Dimensions (in mm)

	1/4" NPT Mounting	1/4" NPT Mounting 3/8" Conduit	1/2" UNF Mounting with 0-ring	M12x1-8g Straight Thread with 0-Ring	"Fish" Pull Ring
Electrical Termination	Lead Wires, 22 AWG, PVC Jacketed, 0.3m				0.6m Cable, 22 AWG, PVC Jacketed

How To Order

yn'00'sı0sues-sur6'MMM

Specify Part Number based on Mounting Type, Input Power and Output Condition required.

Supply	Probe Condition at Current Sink	Mounting Type						
		1/4" NPT	$1 / 4$ " NPT \& $3 / 8$ " Conduit		1/2" UNF	M12x1		"Fish" Pull Ring
		Polysulfone	Polysulfone	Nylon**	Polysulfone	Polysulfone	Nylon**	Polysulfone
5 VDC	Wet	138167	144225	175631	144235	166541	175630	-
10-28 VDC	Wet	142700	143585	157750	143580	169555	175620	143577
	Dry	143570	143590	175632	143575	169556	175610	148973

(Wet = NO, Dry = NC)

Intrinsically-Safe Versions

GEMS ELS-1100 Switches may be rendered intrinsically-safe for Class I, Division 1,
Group C \& D when used with appropriate GEMS Zener Barriers. Call Gems Sensors for special ELS-1100-IS (intrinsically-safe) part numbers and Installation Bulletins.

ELS -1100HT Handles Temperatures to $100^{\circ} \mathrm{C}$

Slightly larger than the ELS-1100, the "HT" or High Temperature version is made from high performance Isoplast® plastic. While maintaining broad chemical compatibility, these units also handle fluid temperatures to $100^{\circ} \mathrm{C}$. They feature $3 / 8^{\prime \prime}$ NPT mountings and the shortest of any of our electro-optic switch bodies-HTS versions are a mere 13 mm long with the option of M16 mounting

Typical Applications

- Coolant reservoir monitoring

Medical diagnostic and steriliser equipment
> Low lubricant warning on machine tools

- Low level warning in food warmers

Specifications

Materials	
Housing and prism	Isoplast $®$
Operating pressure	10 bar, Maximum
Operating temperature*	$-40^{\circ} \mathrm{C}+100^{\circ} \mathrm{C}$
Current consumption	45 mA, Approximately
Output	$\mathrm{TTL} / \mathrm{CMOS}$ Compatible. Transistor
	Output with 10K Pull Up Resistor May Sink 18 mA. mepeatability

* These switches are not for use in freezing liquids

Wiring Diagrams

How To Order

ELS-1100 HT Series

Specify Part Number based on Input and Output Condition required.

	Probe Condition at Current Sink	
Input Power	Wet	Dry
5 VDC	153061	153062
12 VDC*	153063	153064

* 12 VDC input power units switch a max 5 VDC on output

ELS-1100 HTS Series - 5 VDC Input Only

Specify Part Number based on Wet or Dry actuation and mounting type

Probe Condition at Current Sink	$3 / 8^{\prime \prime}$ NPT	M16x2
	181674	$\mathbf{1 9 1 3 4 1}$
Dry	181675	$\mathbf{1 9 1 3 4 2}$

(Wet = NO, Dry = NC)

Dimensions (in mm)

HT Series
3/8" NPT Mounting

HTS Series

 3/8" NPT Mounting

M16 X 2 Straight Thread
Mounting with 0 -Ring

Extended Power and Switching Capabilities of 10-28 VDC Models with Gems.

Converts TTL output signal to 5 Amp relay output. Available as open circuit board or mounted in a NEMA 4X enclosure (pictured). See Page 17

* These switches are not for use in freezing liquid
† See Page 10 for Wiring Diagrams
** Optional Boot for ELS-1100TFE - PN 185551

ELS-1100FLG Flange Mounting for Installations

 Without Threaded Holes| The easy solution for thin wall tanks ($\leq 1 / 4^{\prime \prime}$ thick): ELS-1100FLG Series. No threads needed with these flanged units. Slip through a $75^{\prime \prime}$ hole and tighten the jam nut; Viton® gasket forms a tight seal. Ideal for sheet metal, moulded plastic tanks and medical applications where elimination of exposed threads removes potential bacterial breeding grounds. | |
| :---: | :---: |
| Specifications | |
| Materials
 Housing and Prism | Polysulfone |
| Operating Pressure | 10 bar Maximum |
| Operating Temperature* | $+18^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ |
| Input Voltage | 10-28 VDC |
| Current Consumption | 18 mA , Approximately |
| OutPut \dagger | TTL/CMOS Compatible. Open Collector Output May Sink 40 mA Up to 30 VDC. |
| Repeatability | $\pm 1 \mathrm{~mm}$ |
| EMI Susceptability | Meets (MIL-STD-461B Part 2
 Modified) Specification of $10 \mathrm{~V} / \mathrm{M}$
 for Frequency Range 30 to 1000 MH
 (Except $609 \mathrm{MHz}=9 \mathrm{~V} / \mathrm{M}$
 and $679 \mathrm{MHz}=7.5 \mathrm{~V} / \mathrm{M}$). |

yn"O૭"S」OSUəs-suə6"MMM

[^0]
How To Order

Specify Part Number based on Output Condition and Boot Option

Probe Conditions at Current Sink	Part Number	
	With Boot	Without Boot
Wet	187595	173800
Dry	185600	173700

Dimensions

How To Order

Specify Part Number based on Input Power and Output Condition Required

Input Power	Probe Conditions at Current Sink	
	Wet	Dry
5VDC	187575	187590
$10-28$ VDC	187585	187580

* These switches are not for use in freezing liquid

Typical Wiring Diagrams

Note: Inductive loads must be diode suppressed.

How To Order

Specify Part Number based on Input Power and Output Condition Required

Input Power	Probe Conditions at Current Sink	Part Numbers
5 VDC	Wet	194469
	Dry	194470
12 VDC	Wet	194471
	Dry	194472
24 VDC	Wet	$\mathbf{2 0 3 3 8 5}$
	Dry	$\mathbf{2 0 5 6 0 0}$

Mounting Attitude
These units must be mounted horizontally or up to 45° from horizontal only.

LEVEL
SWITCHES

ELS-1200 Series

Integral Electronics

High pressure liquid processes can now be monitored effectively with very little intrusion into tanks or piping. ELS-1200 switches feature fused glass prisms fused to zinc/nickel plated, carbon steel housings. You will find them to be a compact, reliable and durable solution to liquid level monitoring of refrigerant, compressor oil, hydraulic system reservoirs and machine tools.

Removable Electronics

These electro-optic switches feature a one piece removable electronics module with
1/2" NPT conduit connection and an internal 0-ring seal to protect against external moisture intrusion. Simply unthread the $1 / 2^{" \prime}$ NPT conduit connection for easy replacement of the electronics module without the inconvenience of emptying or depressurising tanks. ELS-1200 switches feature glass prisms fused to zinc/nickel plated, carbon steel housings. Select from either $1 / 2^{" N}$ NPT mounting connections, or 3/4"-16 UNJF-3A straight thread connections with an external 0-ring seal. They
monitor high pressure liquid processes with very little intrusion into tanks or piping.
monitor hign pressure iquid processes with very intle intrusion into tanks or piping.
Specifications

Mounting	1/2" NPT or 3/4'-16 UNJF-3A Thread (Viton '0' ring)
Materials Housing Prism	Zinc/Nickel Plated Carbon Steel ${ }^{1}$ Fused Glass
Operating Pressure	172 bar, Maximum*
$\begin{aligned} & \text { Operating Temperature* } \\ & 5 / 12 \text { VDC } \\ & 24 / 120 \text { VAC } \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+100^{\circ} \mathrm{C} \\ & -29^{\circ} \mathrm{C} \text { to }+116^{\circ} \mathrm{C} \text { (Prism tip) }-29^{\circ} \text { to } 75^{\circ} \mathrm{C} \text { (Electronics) } \end{aligned}$
$\begin{aligned} & \text { Current Consumption } \\ & 5 / 12 \text { VDC } \\ & 24 / 120 \text { VAC } \end{aligned}$	$\begin{aligned} & \sim 45 \mathrm{~mA} \\ & \sim 6 \mathrm{~mA} \end{aligned}$
Output 5/12 VDC	TL/CMOS compatible. Transistor output with 10K pull up Resistor may sink 18 mA . 12 VDC Input power units switch a maximum 5 VDC on output
24/120 VAC	Normally Open: SPST (10 VA Resistive) Max. Switching Volts: V in $\pm 10 \%$ Max. Switching current: $225 \mathrm{~mA} @$ rated voltage @ $25^{\circ} \mathrm{C}$
Electrical Termination** 5/12 VDC	22 AWG, Polymeric, 0.3m extended lead wires
24/120 VAC	20 AWG, Polyester, 0.3m extended lead wires
Repeatability	$\pm 1 \mathrm{~mm}$

* For straight thread mounting units when installed with tube fitting per MS 33649
** Consult GEMS for cable options
*** These switches are not for use in freezing liquids. Consult factory for higher temperature units,
(1) Hastelloy thread with Stainless Steel body is available for harsh environments. Contact Sales Office for details

yn'0э'sıosuəs-suə6'мMM

How To Order

Input Power	Probe Condition at Current Sink	Electronics	Mounting Style	
			1/2" NPT	3/4"-16 UNJF
5 VDC	$\begin{aligned} & \hline \text { Wet } \\ & \text { Dry } \end{aligned}$	Integral	$\begin{aligned} & 153842 \\ & 154177 \end{aligned}$	
	$\begin{aligned} & \text { Wet } \\ & \text { Dry } \end{aligned}$	Removable	$\begin{aligned} & 171574 \\ & 160953 \end{aligned}$	$\begin{aligned} & 161431 \\ & 161432 \end{aligned}$
12 VDC	$\begin{aligned} & \text { Wet } \\ & \text { Dry } \end{aligned}$	Integral	$\begin{aligned} & 153843 \\ & 154178 \end{aligned}$	-- -
	Wet Dry	Removable	$\begin{aligned} & 160646 \\ & 160954 \\ & \hline \end{aligned}$	$\begin{aligned} & 161433 \\ & 161434 \\ & \hline \end{aligned}$
24 VAC	$\begin{aligned} & \text { Wet } \\ & \text { Dry } \\ & \hline \end{aligned}$	Removable	$\begin{aligned} & 166852 \\ & 166854 \end{aligned}$	$\begin{aligned} & 168174 \\ & 168422 \end{aligned}$
120 VAC	$\begin{aligned} & \text { Wet } \\ & \text { Dry } \end{aligned}$	Removable	$\begin{array}{r} 164219 \\ 164222 \\ \hline \end{array}$	$\begin{aligned} & 166848 \\ & 166850 \\ & \hline \end{aligned}$

(Wet = NO, Dry = NC)

Dimensions
ELS-1200 Integral Electronics

ELS-1200 Removable Electronics

Mounting Attitude

These units must be mounted horizontally or up to 45° from horizontal only.

Wiring Diagrams

Transistor Output

TTL Compatible Output

SPST, 24 or 120 VAC Output

16

ELS-300 Series Switches With Customised Lengths to 380mm

Stretch out and take a dip with the custom length ELS-300 Series. They feature the same materials and perfomance of our ELS-1100 Series and are suitable for general purpose use where a top or bottom mount is required. They provide the ability to detect liquid levels within 380 mm of the top or bottom on a tank.

Specifications	
Materials	
Housing and prism	Polysulfone
Operating pressure	0 to 110 bar Maximum
Operating temperature*	$-18^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Input power	5 VDC or 10-28 VDC
Current consumption	18 mA , Approximately
Output	TTL/CMOS Compatible. Open Collector Output May Sink 40 mA Up to 30 VDC .
Repeatability	$\pm 1 \mathrm{~mm}$
EMI susceptibility	Meets (MIL-STD-461B Part 2 Modified) Specification of 10 V/M for Frequency Range 30 to 1000 MHz (Except $609 \mathrm{MHz}=9 \mathrm{~V} / \mathrm{M}$ and $679 \mathrm{MHz}=7.5 \mathrm{~V} / \mathrm{M})$.
Electrical termination	Lead Wires, 22 AWG, PVC 0.3m Cable, 22 AWG, PVC 0.3 mm

* These switches are not for use in freezing liquids

```
Dimensions
```


Ask Gems for order sheet

Specifications

Voltage input	$220 \mathrm{VAC} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Maximum current draw	$70 \mathrm{~mA} @ 220$ VAC
Relay output	SPDT; 5 Amps @ $115 \mathrm{VAC}, 5$ Amps @ 30 VDC
Operating temperatures	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Electrical connections	$1 / 4^{\prime \prime}$ Male Spade Terminals*

*Ten (10) $1 / 4$ " female spade connectors (not shown) shipped loose with each unit.
Dimensions (in mm)

Open Circuit Board Type
NEMA 4X Type

Typical Wiring

[^1]
Float Type Level Switches

Standard or Custom Length Versions

GEMS offers a choice of hundreds of standard, single station liquid level switches. From the compact, all-plastic LS-3 Series to the rugged, all-stainless steel LS-1950 Series, each is instrument quality throughout and built for long service dependability. Sizes and materials have been carefully selected to provide you, the designer, with the greatest flexibility for applications requiring liquid level point monitoring.
With GEMS custom length level switches you have a wide variety of choices. Custom length units may be configured with a single station, or as many as seven (depending on series), in lengths from just a few inches to 10 feet. Mounting and float materials include PVC, Polypropylene, Polysulfone, PVDF, brass, stainless steel and more.

Unique Variations and Options

Need a level switch with an integrated syphon tube? Or, maybe a level switch that also provides continuous temperature output? You'll find both of these and other interesting designs inside this catalogue. GEMS offers more unique "standard" variations, such as bent stems, specialised mountings and floats, or slosh shields because we've been designing and manufacturing liquid level sensors for over 40 years.

Electrical Data

Standard reed switches in GEMS level and flow switch units are hermetically-sealed, magnetically actuated, make-and-break type. Switches are SPST or SPDT, and rated 20 VA. See the chart below for maximum load characteristics of GEMS level switches.

Switch Rating - Maximum Resistive Load

VA	Volts	Amps AC	Amps DC
10 General Use	0-50	. 2	. 13
	120	. 08	N.A.
	100	N.A.	. 1
$\begin{gathered} 20 \\ \text { Pilot Duty } \end{gathered}$	0-30	. 4	. 3
	120	. 17	. 13
	240	. 08	. 06
$\begin{gathered} 50 \\ \text { General Use } \end{gathered}$	0-50	0.5	0.5
	120	. 4	. 4
	240	. 2	. 2
100*	120	.8**	N.A.
	240	. 4	N.A.

[^2]** Limited to 50,000 operations.

	$\begin{aligned} & \text { LEVEL } \\ & \text { switches } \end{aligned}$	Single level switches made of plastic or metal for horizontal installation	
	INIOd ヨ7פNIS	Applications	
		GEMS level switches can actuate visual or acoustic alarms, control pumps automatically or activate shut down protectors.	
		Typical applications: - Vending machines - Water purifiers - Medical equipment - Hydraulic-oil-tanks - Cleaning systems - Marine - Food and beverage industry	LS-6 - LS-7 - LS-1050E - LS-2050E - $\mathrm{S}-52100 \mathrm{E}$
		Construction	- LS-77700
		By selecting an appropriate construction material for the float, stem and retainer, media compatibility can be ensured. Tight tolerances are held on the air gap dimensions between the float and the stem to give maximum operational reliability and long service.	
		Installation and Maintenance	Normaly Open
		For ease of installation standard pipe threads are used throughout. Typical installations are shown in the examples on the right. Maintenance is virtually unnecessary and consists of cleaning off residues from the stem and float if necessary.	
		General specifications and notes	nt the switch is mounted so that the float
		Max. resistive contact loads of the reed switch: SPST 100 VA: $\quad 0.5 \mathrm{~A} ; \quad 250 \mathrm{~V} \mathrm{AC}$ SPST 50 VA: $\quad 0.5 \mathrm{~A} ; \quad 250 \mathrm{~V} \mathrm{AC}$ (normally closed NC/normally open NO) SPDT 20 VA: $\quad 0.5$ A; $\quad 250$ V AC (change-over contact) DC ratings on request.	lowers with the liquid level, the switch is NO Normally Closed
		Abbreviations	When the switch is mounted so that the float rises with the liquid level, the switch is NC
		NO = Normally open NC = Normally closed	
	k k k 0 0 0 0 0 0 0 0 0		The Type 12 features a "dropped float" with elevated hinge points keeping the hinge and float pivot out of the media eliminating float hang-up problem due to liming and calcium build up. Media Level at switch point is approximately 8 mm below pivot.

Single Point Level Switches LS6/LS-7

Small Size - Engineered Plastics, Side Mount
LS-7 Series - Compact side mounts are the solution to many small tanks. These low-cost units are ideal for high
volume use in small tanks and vessels. Engineered plastics construction offers broad compatibility in water, oils and chemicals. The high temperature capability of Versaplast offers an alternative to high cost stainless steel switches.

LS-6
Horizontal Mounting through a $1 / 2^{\prime \prime}$ diameter hole in the tank wall

LS-7 Type 3
Internal Mounting

Type 5
External Mounting

Type 7
External Mounting

Specifications

$\left.\begin{array}{lllll} & \text { LS-6 } & & & \text { TS-7 Type 3 }\end{array}\right)$

* Not suitable for long term use in water.
** Not suitable for Hydrocarbons
*** Thermoplastic Elastomer Zip Cord
**** Limited by gasket to $121^{\circ} \mathrm{C}$
Versaplast (Ryton [80\%] + Nylon [20\%] is suitable for both water and Hydrocarbons)
How To Order

	LS-6	LS-7 Type 3	Type 5 NPT	R1/2 (BSPT)	Type 7 NPT
Polypropylene Float	203740	$\mathbf{1 6 4 5 2 0}$	131100	$\mathbf{1 8 9 4 2 3}$	160450
Nylon Float	-	$\mathbf{1 6 5 5 7 0}$	140620	$\mathbf{1 8 9 4 2 1}$	160460
Versaplast Float	-	$\mathbf{1 8 2 6 0 0}$	177100	$\mathbf{1 8 9 4 2 2}$	188800
Stainless Steel Float	-	-	181625	NA	-

LeveL SWITCHES

* Not suitable for long term use in water.
** Not suitable for Hydrocarbons
*** Thermoplastic Elastomer Zip Cord
**** Limited by gasket to $121^{\circ} \mathrm{C}$
Versaplast (Ryton [80\%] + Nylon [20\%] is suitable for both water and Hydrocarbons)

How To Order

	Type 9	Type 10	Type 12
Nylon Float	164850	$\mathbf{1 6 5 9 0 0}$	
Polypropylene Float	164860	$\mathbf{1 6 5 8 0 0}$	-
Stainless Steel Float	164870	-	-
Noryl Float	-	-	191080
Versaplast Float		$\mathbf{1 8 2 7 0 0}$	-

Single Level Switches, side mounted LS-1050E, LS-2050E, LS-52100E

LS-1050E
External/Internal Mounting
For up to 20 mm wall
(Hole Ø 17mm Internal Mount

LS-2050E Brass/Buna N
General Purpose materials designed to provide reliable service in oils and water.

LS-2050E Stainless Steel Ultimate strength; for pressure up to 60 bar and temperatures to $150^{\circ} \mathrm{C}$

LS-52100E
Rugged, all stainless steel unit offers a broad chemical compatability at temperatures to $150^{\circ} \mathrm{C}$

Specifications

	LS-1050E	LS-2050(E) Brass/Buna N	LS-2050(E) SSteel/SSteel	LS-52100E
Materials Stem/mounting	Brass	Brass	Stainless Steel	Stainless Steel
Float option	Stainless Steel	Buna N	Stainless Steel	Stainless Steel
Lead wire jacket	PVC			
Min. specific gravity of the liquid	0.7 Stainless Steel	0.8	0.9	0.85
Operating temperature $-40^{\circ} \mathrm{C}$ to	$+100^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$ Water $110^{\circ} \mathrm{C}$ Oil	$+150^{\circ} \mathrm{C}$	$+150^{\circ} \mathrm{C}$
Operating pressure Max @ $25^{\circ} \mathrm{C}$	16 bar	10 bar	60 bar	35 bar
Switch SPST	50 VA	SPDT 20 VA	SPDT 20 VA	SPDT 20 VA
Lead wire gauge (Approx 1m long)	Cable $0.34 \mathrm{~mm}^{2}$	Cable $0.34 \mathrm{~mm}^{2}$ PVC Terminal box	Cable $0.5 \mathrm{~mm}^{2}$ silicone Terminal Box	Cable $0.5 \mathrm{~mm}^{2}$ silicone Terminal Box
Float arc	36 mm			
Protection rating	IP64	IP65	IP65	IP65
Weight approx.	300 g	300 g	350 g	300 g

How To Order

Materials	LS-1050E	LS-2050E Brass/Buna N	LS-2050 Stainless Steel	LS-52100E Stainless Steel
Cable	$\mathbf{0 1 1 - 1 0 5 0}$	$010-3465$	$010-3466$	$010-3461$
Terminal Box		$010-3463$	$\mathbf{0 1 0 - 3 4 6 4}$	$010-3462$
Cable + Bellows	-	-	$010-3468$	-
T. Box + Bellows	-	-	$010-3469$	-

With Optional Bellows
Seals moving parts from debris and particulates that might impede shuttle movement. Available for all stainless steel LS-205E with 50 mm float.

Temperature: $120^{\circ} \mathrm{C}$ max, Pressure; 1 bar max; Material; Buna N (Nitrile)

Switch with bellows. Bellows are not sold separately.

Single level switches made of plastic or metal for vertical installation

```
Applications
automatically or activate shut down protectors.
Typical applications:
V Vending machines
- Water purifiers
- Medical equipment
D Hydraulic-oil-tanks
C Cleaning systems
V Marine
```

GEMS level switches can actuate visual or acoustic alarms, control pumps

Construction

By selecting an appropriate construction material for the float, stem and retainer, media compatibility can be ensured. Tight tolerances are held on the air gap dimensions between the float and the stem to give maximum operational reliability and long service.

Installation and Maintenance

For ease of installation standard pipe threads are used throughout. Operation will not be impaired if mounting is up to 30° inclination from the vertical axis. Depth may be varied by installing extension tubes (to be supplied by the customer). Side mounting may be achieved in the same way using standard 90° elbows and extensions. Typical installations are shown in the examples on the right.
Maintenance is virtually unnecessary and consists of cleaning off residues from the stem if necessary.

General Specifications and Notes

Installation Examples

NO/NC is Normally Open (NO) when supplied from the factory unless otherwise requested.
Normally Closed (NC) may be selected by inverting the float. NO or NC only, may not be changed in this way.
Location of the switch point is approx. in the middle of the stem.

Abbreviations

NO = Normally Open
NC = Normally Closed
SPST = Single-pole-single-throw
SPDT = Single-pole-double-throw (Change-over contracts)
fly lead cable

red	white	SPST normally open/NO normally closed/NC		
bed	brown	white		SPDT
:---				
brown				
red				
brown				
green	\quad	change-over		
:---				
contact				

Plastics	
L LS-3	Pear Drop
LS-1900-T	LS-300
LS-74780	
Metals	
LS-1700	LS-750
LS-1800	LS-800-5
LS-1900	LS-159000
LS-1750E	LS-400
LS-1950E	LS-800

- LS-270E/240E
normally open/NO

SPDT
contact

Single level switch LS-3

Ideal for shallow tanks or restricted spaces, or for any low-cost, high volume use
LS-3 Series are available in FDA approved materials, consult GEMS for details.

For water based liquids, with limited use in oils and chemicals

Ideal for oils and fuels

$L_{1} \dagger$ Switch actuation level, nominal (based on a liquid specific gravity of 1.0). Polysulfone Float: 19.0mm

Polypropylene Float (Hollow): 20.6 mm

Polypropylene Float (Solid): 14.3 mm

Buna N Float:
20.6 mm

Specifications

	Polysulfone	Nylon/Buna N	Polypropylene	Polypropyl. (hollow)
Material stem:	Polysulfone	Nylon*	Polypropylene**	Polypropylene**
Material float:	Polysulfone	Buna N	Polypropylene (solid)	Polypropylene (hollow)
Operating pressure:	3 bar	10 bar	10 bar	3 bar
Temperature: cable	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} . .+65^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}$
leads	$-40^{\circ} \mathrm{C} \ldots+107^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C} \ldots+121^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+65^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C} \ldots+107^{\circ} \mathrm{C}$
Depth of immersion at a density of 1 :	$\sim 15 \mathrm{~mm}$	~9 mm	$\sim 19 \mathrm{~mm}$	-13 mm
Min. specific gravity of the liquid:	0.75	0.45 (0.85 19mm)	0.90 (0.85 19mm)	0.60
Type of reed switch:	SPST 50 VA cable	SPST 50 VA (cable)	SPST 50 VA (cable)	SPST 50 VA (cable)
	SPST 20 VA leads	SPST 20 VA (leads)	SPST 20 VA (leads)	SPST 20 VA (leads)
Electrical connection: (Length: appr. 0.6 m)	Cable: $0.34 \mathrm{~mm}^{2}$ PVC Fly lead: AWG 22 PVC	Cable: $0.34 \mathrm{~mm}^{2}$ PVC Fly lead: AWG 22 PVC	Cable: $0.34 \mathrm{~mm}^{2}$ PVC Fly lead: AWG 22 PVC	Cable: $0.34 \mathrm{~mm}^{2}$ PVC Fly lead: AWG 22 PVC
Mounting thread:	$1 / 8$ " NPT <	1/8" NPT, G1/8", M12x1.75, 3/8×16		\longrightarrow
Protection rating :	IP64	IP64	IP64	IP64
Weight: approx	20 g	20 g	20 g	20 g

How To Order

	Mounting	Polysulfone	Nylon/Buna N		Polypropylene		Polypropylene
			25mm	19mm	25 mm	19 mm	
Cable	G1/8	010-2919(1/8 NPT)	171512	177820	171515	-	171518
	M12 + NUT	-	189786	-	189787	-	189739
Leads	1/8 NPT	42295	162745	177818	116826	201540	142505
	3/8 UNC	-	171511	177819	171514	-	171517

LEVEL

 SWITCHESWith Polypropylene stem and float, switch offers broad chemical compatibility

Features a low specific gravity float offering broad chemical compatibility to satisfy a wide variety of applications

Specifications

	LS-77700	LS-1700	LS-1750E	LS-1800
Materials				
Stem and mounting	Brass or S Steel	Brass or S Steel	S Steel	Brass or S Steel
Float	S Steel or Buna N	Buna N or PTFE	S Steel	Buna N
Operating pressure	10bar 7 bar S Steel Float	$\begin{aligned} & 10 \mathrm{Bar} \\ & 70 \text { bar PTFE Float } \end{aligned}$	20 bar	10 bar
Temperature				
$-40^{\circ} \mathrm{C}$ to	$+80^{\circ} \mathrm{C}$ Water	$+80^{\circ} \mathrm{C}$ Water	$+150^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$ Water
(Note: PVC Cable	$+110^{\circ} \mathrm{C}$ Oil	$+110^{\circ} \mathrm{C}$ Oil		$+110^{\circ} \mathrm{C}$ Oil
Limited to $+80^{\circ} \mathrm{C}$ Ambient)	$+150^{\circ} \mathrm{C}$ S Steel Float	$+100^{\circ} \mathrm{C} \mathrm{PTFE}$		
Depth of immersion at a density of 1	$\begin{array}{ll} \text { Buna } \mathrm{N}: ~ & \sim 9 \mathrm{~mm} \\ \text { S Steel: } & \sim 15 \mathrm{~mm} \end{array}$	$\begin{array}{ll} \text { Buna } \mathrm{N}: & \sim 9 \mathrm{~mm} \\ \text { PTFE: } & \sim 13 \mathrm{~mm} \end{array}$	$\sim 21 \mathrm{~mm}$	$\sim 24 \mathrm{~mm}$
Minimum specific gravity of the liquid	Buna N: 0.45 S Steel: 0.7	Buna N: 0.45 PTFE: 0.85	0.85	0.7
Type of reed switch	SPST 20 VA	SPST 50 VA	SPST 50 VA	SPST 100 VA SPDT 20 VA
Electrical connection (Length approx. 1m)	22 AWG 0.6m L., Teflon® Lead wires	Fly lead: AWG 20 FEP Cable: $\quad 0.34 \mathrm{~mm} 2 \mathrm{PVC}$	Fly lead: AWG 20 FEP Cable: $\quad 0.34 \mathrm{~mm} 2 \mathrm{PVC}$	Fly Lead: AWG 20 FEP Cable: $\quad 0.34 \mathrm{~mm} 2$ PVC
Mounting thread	$\begin{aligned} & \text { 1/8" NPT } \\ & 3 / 8^{\prime \prime} \text { UNF with nut } \end{aligned}$	$1 / 8^{\prime \prime} \text { NPT }_{\text {G } 1 / 8}$	G 1/8	$1 / 8^{\prime \prime} \text { NPT } \quad \text { G } 1 / 8$
Protection rating	IP64	IP64	IP64	IP64
Weight approx	150 g	30 g	50 g	80g

- Consult factory for De-min water applications

How to Order

Stem, Float, Mounting Electrical Connection	LS-77700	LS-1700	LS1750E	LS-1800
Brass/Buna, NPT, cable		$010-2921$ NO/NC		$010-2930$ NO/NC 010-3011 SPDT
Brass/Buna, NPT, leads	118125	$010-1701$ NO/NC		$013-5651$ NO/NC 013-0272 SPDT
Brass/Buna, G, cable		$\mathbf{0 1 1 - 1 7 0 0 ~ N O / N C ~}$		$011-1800$ NO/NC
SSteel/Buna, NPT, cable		$010-2922$ NO/NC		$010-2931$ NO/NC
SSteel/Buna, NPT, leads	$010-1702$ NO/NC		$010-3013$	
SSteel/PTFE, NPT, leads	$012-6791$ NO 012-7980 NC			
SSteel/PTFE, NPT, cable	$010-2924$ NO 010-2923 NC			
Brass/Buna, 3/8" UNF, leads	118127			
SSteel/SSteel, 3/8" UNF, leads	117716		$012-4367$ SPDT	
SSteel/SSteel, G, cable PVC			$011-1750$ NO/NC	
SSteel/SSteel, G, leads			$010-0340$ NO/NC	
SSteel/SSteel, G, cable Silicon				

Bilge water level switches

The design of GEMS bilge water level switches combines reliable switching in contaminated liquids with compact dimensions. These switches
have been developed for general naval and industrial applications. They have protective housings which dampen the movements and turbulence of the medium and maintain their reliable operation even if there is solid matter in the bilge water.

Acceptance and Approvals

Various civil, military and naval approvals are on hand for many of these products. Please ask for further details.

Applications

LS-240-3E: This switch has extremely robust construction. It is perfectly suitable for applications on ships and wherever heavy mechanical loads occur. The LS-240-3E has been accepted by the Germanischer Lloyd, among others, and approved for application by the German Navy.
LS-270-E: This bilge water level switch has been developed especially for low level alarms and can monitor levels as low as 35 mm . As the cable is vulcanized the switch is submersible to "IP67". The float can also be constructed as an interface level indicator.
The LS-270-E has been accepted by the Germanischer Lloyd, among others, and approved for application by the German Navy.
LS-750: With a compact-sized float, slosh shield and weighted collar, the LS-750 provides liquid level detection for a wide variety of applications. Suspend in stand pipes or sumps for leak detection duty, or drop into wells for ground-water monitoring. Supplied with 7.5 m of waterproof cable.

Specifications			
	LS-240-3E	LS-270-E	LS-750
Material stem	S Steel	S Steel	Brass
Material float:	Buna N	Buna N	Buna N
Stilling chamber	S. Steel	Lucite	Brass
Bracket	S Steel	S Steel	
Operating pressure	10 bar	10 bar	10 bar
Temperature $-40^{\circ} \mathrm{C}$ to	$+80^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$	$+80^{\circ} \mathrm{C}$ Water
Min. specific gravity of the liquid	0.53	Standard: 0.58 Interface level: 0.85/1	0.45
Protection rating	IP67	IP67	IP68 to 8m
Type of reed switch	SPST 100 VA	SPST 100 VA	N.C., 20VA
Electrical connection	(Length 2 m) Cable:LMGSGo $2 \times 1.5 \mathrm{~mm} 2$	(Length 2m) Cable: CR $3 \times 1.5 \mathrm{~mm} 2$	(Length 7.5m) PVC Cable Jacket 22 AWG
Weight	650 g	530 g	830 g

How to Order

* K6 J.box option for LS-800-5, consult Sales Office
* Customer selectable switching NO/NC

Series M - Mechanical Tilt Float Level Switch

Designed for level control and alarm applications in difficult liquids such as sewage and waste water. Series M mechanical tilt floats are ideal for applications where the presence of mercury is a concern. Series M switches have impact resistant ABS shell and neoprene jacketed cables.
, Non-Mercury Switch

- Sealed Cable
> Impact \& Corrosion Resistant ABS Shell
> N.O., N.C., SPDT Contacts
- Various Cable Lengths
- Colour Coded Body

Specifications

Cord	16 gauge 2 or 3 conductor SJOW Oil Resistant CPE
Contact rating	13 amp @ $120 / 240$ VAC $1 / 2 \mathrm{hp}$
Contact design	SPST, Normally Open or Normally Closed Common with N.O. \& N.C. (form C)
Temperature rating	Wet $60^{\circ} \mathrm{C} ;$ Dry $90^{\circ} \mathrm{C}$
Overall weight	0.5 k (not including weight)
Tether method	Tie-wrap nylon, weight 1 kg
Approvals	U.L. recognised, CSA Cert, CE
Maximum pressure	1 Bar G

Dimensions (in mm)

1. Narrow angle pumping range approximately 0.6 to $2.4 \mathrm{~m}\left(30^{\circ}\right)$
2. Wide angle pumping range approximately Wide angle pumping
1.5 to $5.5 \mathrm{~m}\left(90^{\circ}\right)$

Tender Method	Part Number
Tie Wrap	7762360
Weight	7762381

Notes:

Level
switches

GEMS level switches LS-300, LS-400E, LS-800E, LS-800E-PVC series provide an excellent method of controlling liquid levels in tanks.
The units are made to the customer's specific requirements and are well suited to most
industries due to the large range of different mountings and materials of construction.

Operation

A float equipped with a permanent magnet moves up and down with the fluid level between two stop rings and its magnetic field actuates a hermetically sealed reed switch embedded in the stem.

Installation and Maintenance

The level switches of the LS-300, LS-400E, LS-800E, LS-800E-PVC are mounted through the opening (flange or threaded) in the tank top or the bottom of the tank. Although the units are designed for vertical operation, they operate without problems even when mounted at an angle of up to 30° from the vertical axis. Maintenance work is reduced to a minimum and consists of cleaning off residues from the switch stem if necessary.

Max lengths

LS-300:	400 mm
LS-400E:	800 mm
LS-800E:	3000 mm
LS-800E-PVC	2000 mm

yn'00'sıosues-suə6'MMM

LS-800E-PVC
D All-Plastic Wetted Parts (Polysulfone)

- Lengths to 400 mm

Designed for the high quantity needs of the OEM, LS-300 Series Switches are the ideal level sensor for shallow tanks and reservoirs. Compact and versatile, these low-cost, plastic level switches offer a broad choice of mountings and float materials. The following pages illustrate the various design parameters available to configure custom LS-300 Series Switches.

Mounting Types

Type 11 No Mounting

Straight Threads

Type 31 3/8"-24

Metric Threads
Type 41
G1/4"-19BSP)
Stem, Mounting and
Collar Material
Max Length (Lo)
Molysulfone
Mounting Position

Type 42

Type 51 M12x1.5 Straight Thread

Flange Mountings
Type 61
2" O.D. Flange
4 DIA. (4) HOLES EQUALLY SPACED AS SHOWN ON A 38 B.C.

MOUNTING HOLE Ø $33.4 \pm 0.13 \mathrm{~mm}$

	Type 1 Leadwire	Type 2 Cable	Type 3 Liquid-Tight Cable	Type 4 Junction Box Assembly	Type 5 DIN43650 Plug	Type 6 DIN43651 Plug
Compatible Mounting Type(s)	All		42		42, 62	42
Protection Rating	IP64		IP67	IP65		
Extended Leads	\#22 AWG PVC 610 mm Min.		\#22 AWG PVC d Cable, 610 mm Min	Terminal Box (7 Terminals)	3 Poles	6 Poles
Max. No. of Levels Group I	5				2	5
Group II	3				1	3

	LEVEL SWITCHES					
		Floats				
				Polysulfone	Polypropylene	
		Float Material	Buna N		Solid Foamed	Hollow
		Float Dimensions		¢)	昂
			24	26	25	26
				- 1	- 1	1
			$\xrightarrow{\square} \underbrace{\square}$	$\xrightarrow{\square} \xrightarrow{\square}$	$\xrightarrow{\square}{ }_{\square}$	$\xrightarrow{\square}$ ø25
		Float Material Suitable for ...	Oil, Fuels	Waterbased Liquids	Broad Chemical Use	Low Specific Gravity Liquids
		Operating Temperature *	$\begin{gathered} \text { Water to } 80^{\circ} \\ \text { Oil: }-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C} \end{gathered}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +105^{\circ} \mathrm{C} \end{aligned}$
11		Pressure, (bar), Max. **	17	3.5	17	3.5
\checkmark		Min. Media Specific Gravity	. 45	. 75	. 90	. 65

* Operating temperature range based on float ratings
** When used with mounting Type 21, 32 or 22 only; Mounting Type 61,62 and 63 are not recommended for pressure applications. Pressures are derated with increasing temperature.

Electrical Specifications

Typically, one float is required for each point at which you need a switch action to occur. The number of actuation levels available depends on the Group Type Wiring selected; see below.

Group I Wiring:	1 to 5 Actuation Levels
Group II Wiring:	1 to 3 Actuation Levels
Switch (SPST, N.O. or N.C.):	$10 / 20 / 50 / 100$ VA.
Notes:	
1. Units with 50 and 100 VA switches are not UL recognised or CSA listed. 2. Other wiring options available. Consull factory. 3. Consult Factory for load information.	

Float Type		Dimensions		
	A	B	C	D
Buna N	25 mm	45 mm	$\begin{gathered} 3 \mathrm{~mm} \\ \text { Minimum } \end{gathered}$	18mm
Polysulfone	22 mm			24 mm
Solid P.P.	16 mm			29 mm
Hollow P.P.	22 mm			22 mm

Notes:

1. Actuation levels are calibrated on ascending fluid level with water, specific gravity 1.0 , as the calibrating fluid, unless otherwise specified.
2. Tolerance on actuation levels is $\pm 3 \mathrm{~mm}$.
3. Tolerance on length is $\pm 2 \mathrm{~mm}$.

Switching Group

* Pin correlation of plug connectors shown in parenthesis.

A = Minimum distance to highest actuation level
$B=$ Minimum distance between actuation levels.
$\mathrm{C}=$ Minimum distance between two actuation levels with one float (Note: One float for two levels can be used only when low level is N.C. dry and high level is N.O. Dry
$D=$ Minimum distance from end of unit to lowest level.
Switch actuation levels are determined following the guidelines below.

Actuation Level Dimensions

* Actuation level distances and Lo (overall unit length) are measured from inner surfaces of mounting plug or flange.
See mounting types on page 40 for L_{0} reference point.
** Length Overall $\left(L_{0}\right)=L 1+$ Dimension D. See Mounting Types for Maximum Length values.

LS-300 Custom Length, float type level switch check list

Application Specific Data

This information is essential to the accurate and proper operation of your GEMS configurable sensor. Please complete fully and accurately before ordering.

1. Liquid Media					5. Viscosity: SSU
2. Pressure:	Minimum	$\square \mathrm{ba}$	Maximum	$\square \mathrm{bar}$	6. Tank Material:
3. Temperature:	Minimum	$\square{ }^{\circ} \mathrm{C}$	Maximum	$\square{ }^{\circ} \mathrm{C}$	
4. Specific Gravity:	Minimum	\square	Maximum	\square	Tank Depth:

Enter selected code, from the chart below, at the relevant positions to create Pt. No.

Product Parameters

1. Mounting Type:

$\square 11$ - No mounting	$\square 21-1 / 8^{\prime \prime}$ NPT
$\square 22-1^{\prime \prime}$ NPT	$\square 31-3 / 8^{\prime \prime}-24$ Straight Thread
$\square 32-1-5 / 16^{\prime \prime}-12$	$\square 41-G 1 / 4^{\prime \prime}-\left(1 / 4^{\prime \prime}-19 B S P\right)$
$\square 42-$ G1" $\left(1^{\prime \prime}-11 \mathrm{BSP}\right)$	$\square 51-\mathrm{M} 12 \times 1.5$ Straight Thread
$\square 61-2 " 0 . D$. Flange	$\square 62-3^{\prime \prime}-24$ 0.D. Flange
$\square 63$ - Pop Flange	

2. Electrical Connections:

\checkmark	Type	Description	Compatible Mountings
	1	Lead Wires, 610mm, Min	All
	2	Cable, 610mm, Min	All
	3	Liquid-Tight Cable Fitting	42
	4	Junction Box Assembly	42
	5	DIN43650 Plug Connector, 3 Poles	42,62
	6	DIN43651 Plug Connector, 6 Poles	42

3. Float Type:

$B N$ - Buna-NPS - PolysulfoneSPP - Solid Foamed PolypropyleneHPP - Hollow Polypropylene
4. Electrical Rating:

$\square 010$ - SPST, 10VA020 - SPST, 20VA050 - SPST, 50VA100 - SPST, 100VA

5. Switching Group:

\square Group 1 - Common ReturnGroup 2 - Independent Return
6. Switch Actuation Level*:

Actuation Level	*Distance to Actuation Level from inner face of mounting	SPST Switch Operation** (Check Type)	
		N.0.	N.C.
$L 5$			
$L 4$			
$L 3$			
$L 2$			
$L 1 * * *$			

Number of levels. \qquad .(entered at pos. 6 in pt. No above)

* Measured from inner surface of mounting plug or

 flange. See mounting types on page 1.** Switch position is "normal" with unit dry (tank empty).
*** L1 is the distance to the lowest actuation level with mounting "up", and is the distance to the highest actuation level with mounting "down".
B. Length Overall from inner face of mounting.... $(\max 400 \mathrm{~mm})$
7. Unit is Mounted in:T - Top MountedB - Bottom Mounted

(Please copy and use as order form)
Customer:
Order no.:
Application specific data:

7. Connection periphery (eg relay, PLC,.....):

*K6 not available with flange options BM1, 2 and 3

Please specify each non listed part: \qquad
\qquad
\qquad

Dimensions

$\mathbf{L}_{\mathbf{0}}=800 \mathrm{~mm}$ max.
A = min. from reference edge to highest switch point.
$\mathbf{B}=$ min. from stem end to lowest switch point.
C = min. between two switch points
D = min. dual action (One float actuates two switch points)

Stem	Brass	Stainless Steel
A	38 mm	46 mm
B	23 mm	35 mm
C	44 mm	60 mm
D	3 mm	3 mm

Reference edge (Sealing Face)

Bent Stem Option

Level dimensions (Tolerances $\pm 3 \mathrm{~mm}$) related to the mid of float.

Distance level	N0	NC	SPDT
$\mathrm{L} 1=$	\square	\square	\square
$\mathrm{L} 2=$	\square	\square	\square
$\mathrm{L} 3=$	\square	\square	
$\mathrm{L} 4=$	\square	\square	
$\mathrm{L} 0=$	$\pm 2 \mathrm{~mm}$	\max. 800 mm	

Multiple Level Switch LS-800E (1-7 switch points)

Max. contact loads of the reed switch:
SPST 100 VA; 3.0 A; 250 VAC (NC/NO).
SPDT 20 VA; 0.5 A; 250 VAC (Change-over contact),
The data $\mathrm{NC} / \mathrm{NO}$ are defined for: an empty tank / rising level.

Specifications					
Materials Stem Mounting elements Flange Float	Brass	Brass	Stainless Steel Stainless Steel		
Stainless Steel only				\quad PTFE	Suna N
:---					

Mounting Direction

Mounting Types

(Material: Stainless Steel or brass)
BCC = Flange DN65-PN 16

DM/DC = Put in plug G1/4

$\boxed{0127}$
Available with Potted Cable/Leads Option only

Floats

C = Stainless Steel

T = PTFE

Electrical Connections

Pg 13.5 Cable and gland Plug connector acc. DIN43651* Cable standard length appr. $1 \mathrm{~m} ; 6$ poles + earth

Temperature: $-20 \ldots+90^{\circ} \mathrm{C}$
max switch points: Group $1: 5$
Group 2 : 3, Group 3 : 2, Group 4 : 2

Plug connector acc. DIN43650*
3 poles + earth
Temperature: - $20 \ldots+90^{\circ} \mathrm{C}$
max switch points: Group $1: 2$,
Group 2 : 1

* Combination with put in plug "EM/EC" is not possible

Dimensions

$\mathrm{L}_{\mathbf{0}}=3000 \mathrm{~mm}$ max.
$\mathbf{A}=60 \mathrm{~mm}$ min. distance to highest switch point.
B $=50 \mathrm{~mm}$ min. distance between stem and lowest switch point.
C $=75 \mathrm{~mm}$ min. between two switch points
D $=7 \mathrm{~mm}$ min. dual action (One float actuates two switch points).

Reference edge (Sealing Face)

LS-800E -

Customer: \qquad
Order no.: \qquad Quantity: \qquad
$A=58 \mathrm{~mm}$ min. distance to upper switch point $B=50 \mathrm{~mm}$ min. distance stem end to lowest switch point
$C=75 \mathrm{~mm}$ min. distance between two switch points
$D=7 \mathrm{~mm}$ min. distance between two switch points actuated by one float
(Please complete fully and accurately)

1. Medium \qquad
2. Pressure (bar): Min \quad Max ___
3. Temperature $\left({ }^{\circ} \mathrm{C}\right): \quad$ Min \qquad Max \qquad
4. Specific gravity (g/cm3): \qquad Min \qquad Max \qquad
5. Viscosity (SSU): \qquad
6. Tank: Material \qquad Depth \qquad
7. Connection periphery (eg relay, PLC,.....): \qquad

LS-800E - . . PVC -

Order data

1. Mounting direction:	Through tank top	\square
	Through tank bottom	\square
2. Electrical connection:		\square
	Pg9 cable and gland (standard length: 1m)	
	Terminal box 6-poles	\square

3. Switching:

Group 1
Group 2

1

Group 3
Group 4
Dual-action: One float actuates two switch points (max distance=D).

Level Dimensions

(Tolerance $\pm 3 \mathrm{~mm}$) related to the mid of float

Detector® Liquid Level Sensors featuring Micropower Impulse Radar

Whether or not you are familiar with Micropower Impulse Radar (MIR), also known as guided wave radar, there is one important fact you need to know: Gems Detector ${ }^{\circledR}$ Series are the most affordable radar liquid level sensors ever brought to market. Years in development, our key goal was to make radar affordable for original equipment manufacturers, while retaining robust performance so necessary in process use. Gems Detector price- performance statistics are going to change the way you think about using radar for liquid level sensing! Detector sensors are currently available in two dual-guide versions:solid rods and flexible rods. Each has particular advantages that suit a variety of special requirements, yet they share many common high-performance traits.
(Great Resolution - 0.25 mm

- Great Repeatability -0.25 mm
- Great Response $-<2$ seconds

Gems Detector sensors are effective for measuring any liquid with a dielectric ≥ 3.0 and are particularly effective in media that often frustrate other measuring technologies. Foaming liquids, viscous and coating fluids, slurries and other particulated liquid media - all are candidates for the micropower impulse radar technology employed in Detector sensors.
Smart and responsive, Detector sensors transmit microwave pulses every 2μ sec and detect new readings every 310 milliseconds. Each reading compiles a running average of the previous 5 cycles to provide your system accurate level measurements to within 0.25 mm . Putting it another way, Detector Sensors deliver 30 million pulses and 193 reading updates every minute! This is high performance measurement you can depend on and one more example of Gems commitment to Smarter Products, Better Solutions.

Radar - What's the Difference

Unlike conventional through-air radar (also known as FMCW - Frequency Modulated Continuous Wave), Micropower Impulse Radar (MIR) utilises a wave-guide to direct or guide very low power microwave pulses. FMCW radar sensors emit higher frequency microwave pulses through-air to reflect from the product surface.
yn'0э's」osuəs-suə6'mmm

Through-air radar is a non-contact method that utilises a reflected radio wave to determine level. The technology requires high power output and tends to require complex signal and data processing. This results in large antennas, expensive electronics and extensive installation.

MIR directs a pulse down a probe that is reflected at the material to be measured. Transit time is measured and level calculated. Use of a probe or wave-guide permits very efficient energy transmission, use of compact, low power electronics resulting in higher efficiency and lower costs.

Radar for OEMs

- Food \& Beverage
- Fuel Cells
- Medical Equipment
- Printing
- HVAC/R
- Semicon
- Pharmaceuticals Manufacturing
- Speciality Chemicals
- Measure Contents of Any Vessel from 102 mm to 3.65M

Gems has designed and priced Detector sensors for practical and affordable application by Original Equipment Manufacturers. Specify either MIR-800 or MIR-900 and we will deliver your sensors sized and calibrated - ready to drop in and connect with minimal labour.
We welcome your inquiries. Please contact a Gems specialist today to discover how radar can make your product smarter and better.

| 4 |
| :--- | :--- |

Principle of Operation

Detector sensor uses Micropower Impulse Radar (MIR) or time Domain Reflectometry (TDR)to measure the distance to the surface of the tank contents and output a $4-20 \mathrm{~mA}$ signal proportional to liquid level with high resolution and accuracy.

1 Radar Pulse Generated

Very high frequency, low power microwave pulses are generated and sent down the probe.

2 Wave Reflection

When the pulses reach the liquid surface, they are reflected. The dielectric constant of the liquid determines how much of the pulse is reflected. These reflected pulses travel back up the probe where they are detected and timed.

3 Distance Calculation

The Detector interprets this time of flight information and converts it into liquid level or tank volume.

MIR Applications

MIR excels at Difficult Fluid Sensing
Detector ${ }^{\otimes}$ MIR Sensors are compatible with more types of difficult media than other technologies. If you don't see your fluid challenge here, call Gems Sensors and we will tell you why Detector ${ }^{\circledR}$ Sensors are right for your application.

	Detector® MIR	Radar (FMCW)	Ultrasonic	RF (apacitance	Magneto- restrictive	Float/ Magnetic
Changing Dielectric Constant	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Coatings	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
Foam	\checkmark					
Low Specific Gravity	\checkmark	\checkmark	\checkmark			
Changing Specific Gravity	\checkmark	\checkmark	\checkmark			
Dirty Liquids	\checkmark	\checkmark	\checkmark			
Slurries	\checkmark	\checkmark	\checkmark	\checkmark		
Steam/Condensate	\checkmark				\checkmark	\checkmark
Suspended Solids	\checkmark					
Vapours	\checkmark	\checkmark			\checkmark	\checkmark
Interface Detection				\checkmark	\checkmark	\checkmark
Non-Contact		\checkmark	\checkmark			

Definitions

Dielectric Constant (dk)

A characteristic quantity of a given dielectric substance, sometimes called the relative permittivity
In general, the dielectric constant is a complex constant, with the one segment being reflective surface properties, and another being the radio absorption coefficient.

Accuracy

How closely an instrument measures the true or actual value of the process variable being measured or sensed

Repeatability

The maximum difference between output readings of a device or measurement to produce, repeatedly and without adjustments, the same value or result.

Resolution

The smallest increment of change that can be detected which produces a detectable change in the output.

MIR-800E Series - Solid Dual Rod

Series 800 E sensors feature solid wave guides to reach within <1mm of a tank bottom; especially beneficial when controlling expensive fluids, where undetected inventory beneath common sensors represents costly waste. A deadband of just 6 mm is located at the top end just below the mounting.
These sensors are stocked and available with rods of 1000 mm or 2000 mm and may be trimmed to required length during installation. For OEM customers, Gems supplies finished units sized per specification and ready for installation. For deeper tanks, please see the MIR-900E Series.

Specifications

General Model	MIR-800E
Wave guide configuration	Solid, Dual Rod
Technology	Micropower Impulse Radar
Operating frequency	2.5 GHz
Mechanical	
Enclosure material	304SS
Enclosure height	110 mm
Probe material	316SS
Probe dimensions	4.75 mm diameter
Other wetted materials	Thermal plastic polyurethane, TPX (Polymethylpentene), Viton ${ }^{\circledR}$
Mountings	1" \& 2" BSPs (NPT also available)
Indication range	102 mm to 2m
Electrical	
Supply voltage	6-36 VDC
Output	4-20mA (2-wire)
Approvals	UL \& CSA Intrinsically Safe (Pending), CE
Termination	1/2" NPT conduit with cable gland
Environmental	
Temperature range	$-18^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Maximum pressure	6.9 bar @ $65^{\circ} \mathrm{C}$
Dielectric range	≥ 3.0
Enclosure rating	IP67
Electromagnetic compatibility	CE EN 50081-1 Emissions; CE EN 50082-1 Immunity
Performance	
Resolution	0.25 mm
Repeatability	0.25 mm
Accuracy	1-2\% full scale
Linearity	1-2\% full scale
Response time	2 seconds
Warm-up time	15 seconds

yn'0э's」osuəs-suə6'mmm

MiR-800E: Cut \& Calibrate

Gems Sensors stocks standard sensors that you cut to length and calibrate. And to simplify the calibration, a display and two pushbuttons are included.

1. Order sensors from stock - ship same day.
2. Cut the rods to suit your tank.
3. Simple three step calibration; no need to fill and drain your tank.
4. Install the sensor.

How to Order

Select by mounting size and wave guide length suitable for tank depth

Mounting Size	Wave Guide Length (See Cut \& Calibrate above)	Configurable Length of Indication	Part Number
$1 " \mathrm{BSP}$	1000 mm	102 mm to 1 m	$\mathbf{0 4 1 - 1 0 1 5}$
	2000 mm	102 mm to 2 m	$\mathbf{0 4 1 - 1 0 1 7}$
$2 " \mathrm{BSP}$	1000 mm	102 mm to 1 m	$\mathbf{0 4 1 - 1 0 1 6}$
	2000 mm	102 mm to 2 m	$\mathbf{0 4 1 - 1 0 1 8}$
NPT Sizes	Contact a Gems Specialist		

Dimensions (in mm)
Except for mounting sizes, all types share equivalent dimensions

Cable Gland

MIR-800E Series sensors detect fluid media to within a hair of the bottom of a tank or vessel - about the thickness of the paper this brochure is printed on is all the separation needed for the proper sensor function.

MIR-900E Series - Flexible Dual Rod
 ``` > Highly Repeatable Tefzel

\mp@subsup{}{}{\circ}\mathrm{ Wave Guide Encapsulation
 Lengths to 3.65m Ideal for Coating/Viscous Liquids```}

MIR-900E Series sensors handle tank depths to 3.65 m , but more important for some will be the ability of this series to deliver dependable sensing in fluids that coat and build up on the sensor wave guide. The flexible dual rod is completely encapsulated with a low-dielectric bridge between the rods that facilitates accurate wave reflection, even when coated with media.
Two standard lengths are available, which may be trimmed to size to fit tanks 3.65 m deep or less. A stainless steel weight, fitted at the guide's end, mantains guide rigidity. OEM versions are sized and calibrated at the factory and supplied with fitted Ryton \({ }^{\oplus}\) end weights. With zero deadband at the top, MIR-900E is capable of measuring tank contents right up to the bottom of its mounting

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline General Model & MIR-900E \\
\hline Wave guide configuration & Flexible, Dual Rod \\
\hline Technology & Micropower Impulse Radar \\
\hline Operating frequency & 2.5 GHz \\
\hline \multicolumn{2}{|l|}{Mechanical} \\
\hline Enclosure material & 304SS \\
\hline Enclosure height & 110 mm \\
\hline Probe material & Tefzel \({ }^{\circledR}\) over-moulded 304SS \\
\hline Probe dimensions & 13.6 mm width \(\times 2.13 \mathrm{~mm}\) thickness \\
\hline Other wetted materials & Thermal plastic polyurethane, Viton \({ }^{\circledR}\), 304SS, Silicone, Ryton \({ }^{\circledR}\) \\
\hline Mountings & 1" \& 2" BSPs (NPT also available) \\
\hline Indication range & 102mm to 3.65m \\
\hline \multicolumn{2}{|l|}{Electrical} \\
\hline Supply voltage & 8-36 VDC \\
\hline Output & 4-20mA (2-wire) \\
\hline Approvals & UL \& CSA Intrinsically Safe (Pending), CE \\
\hline Termination & 1/2" NPT conduit with cable gland \\
\hline \multicolumn{2}{|l|}{Environmental} \\
\hline Temperature range & \(-18^{\circ} \mathrm{C}\) to \(+65^{\circ} \mathrm{C}\) \\
\hline Maximum pressure & 6.9 bar @ \(65^{\circ} \mathrm{C}\) \\
\hline Dielectric range & \(\geq 3.0\) \\
\hline Enclosure rating & IP67 \\
\hline Electromagnetic compatibility & CE EN 50081-1 Emissions; CE EN 50082-1 Immunity \\
\hline \multicolumn{2}{|l|}{Performance} \\
\hline Resolution & 0.25 mm \\
\hline Repeatability & 0.25 mm \\
\hline Accuracy & 1-2\% full scale \\
\hline Linearity & 1-2\% full scale \\
\hline Response time & 2 seconds \\
\hline Warm-up time & 15 seconds \\
\hline
\end{tabular}

MIR-900E: Cut \& Calibrate

Gems Sensors stocks standard sensors that you cut to length and calibrate. And to simplify the calibration, a display and two pushbuttons are included.
1. Order sensors from stock - ship same day.
2. Cut the rods to suit your tank.
3. Simple three step calibration; no need to fill and drain your tank.
4. Install the sensor.

How to Order
Select by mounting size and wave guide length suitable for tank depth
\begin{tabular}{c|c|c|c}
\hline Mounting Size & \begin{tabular}{c}
Wave Guide Length \\
(See Cut \& Calibrate above)
\end{tabular} & \begin{tabular}{c}
Configurable \\
Length of Indication
\end{tabular} & Part Number \\
\hline \(1^{\prime \prime}\) BSP & 3500 mm & 102 mm to 3.65 m & \(\mathbf{0 4 1 - 1 0 2 3}\) \\
\hline 2 " BSP & 3500 mm & 102 mm to 3.65 mm & \(\mathbf{0 4 1 - 1 0 2 4}\) \\
\hline NPT Sizes & & \multicolumn{3}{|c}{ Contact a Gems Specialist } \\
\hline
\end{tabular}

1. Use in deeper tanks

MIR-900E measures fluids to 3.65 m . (Use MIR-800E up to 2 m)
2. Roll Out Installation for Tight Spaces

Tanks will often find their tops very close to ceilings. Flexible rods make installation a snap where tight headroom would render a long length sensor impractical. Use MIR-900E wherever space above the tank is at a premium.

\section*{3. Zero Deadband}

Sense liquids right up to the bottom of the sensor head with MIR-900E sensors there is no dead band at the high level point.
4. Over-moulded Rods for Coating,

Crystallisation, and product build-up
Inks, paints, honey, syrups and other coating fluids will not stop the MIR-900E from maintaining accurate level sensing.
5. Roll Up for Easy Transport and Handling

Moving a 3.65 m long sensor has never been this easy. The MIR-900E saves storage space and reduces shipping costs. \begin{tabular}{ll}
\\
\cline { 1 - 2 } & \\
\hline
\end{tabular}

GEMS flow switches work according to the principle which is shown in the simplified diagrams on this page.
One can differentiate between two main operating principals:
1. A magnet-equipped piston or shuttle, displaced by the pressure differential (\(>350 \mathrm{mb}\)) from fluid flow, magnetically actuates a hermitically sealed reed switch within the unit.
2. Liquid flow deflects a paddle, which - with a pivoting cam - moves a magnet-equipped shuttle along the unit stem.
With both operating principles, if a pre-defined flow rate is achieved, a hermetically sealed reed switch is actuated by the magnetic field, resulting in the opening or closing of an electric circuit.

\section*{Operating principle}

\section*{Flow Switches}

\section*{Unique Designs ... For use in Liquids or Gases}

GEMS line of flow switches features a broad range of configurations for use in liquids or gases. At preset ranges, ranging from \(50 \mathrm{cc} / \mathrm{min}\) to \(375 \mathrm{I} / \mathrm{min}\), GEMS switches will initiate alarm actuation to automatic shut-down of a system.
These switches feature high quality, corrosion-resistant materials for use in the toughest environments. Material choices, ranging from stainless steel to Ryton®, offer vast chemical compatibility. Versions include switches with fixed or adjustable actuation settings, models for viscosity compensation or high pressures, in-line models and designs to satisfy any mounting or space requirement.

\section*{Selector Guide}

The versatile GEMS Flow Switch line utilises four basic operating principles. This flow section is organised into four operational types: Piston, Shuttle, Paddle and Electronic. The Shuttle models are for use with high flow rates; the Piston types are designed for low flow rates; the Paddle for large line sizes and the Electronic switches encompass state-of-the-art electronics and positive visual indication.

\section*{Variety of Operaating Principles}

You can quickly pinpoint the GEMS Flow Switch that best meets your requirements using the Selection Chart on page 49. It directs you from the most general criteria of your application ... through key design choices ... to the specific switch series suitable for use. The Selector Guide also provides an excellent overall view of the full scope of the GEMS Flow Switch line and options detailed in this catalogue.

\section*{Notes:}

For correct operation all piston and shuttle types require at least 350 mb line pressure.
Paddle Types

Piston Types

Shuttle Types

Flow Switch Selection Chart

*Materials of construction are either FDA or NSF compliant.

\section*{Notes:}
1. NO switches in No Flow condition are standard; please contact us for NC models.
2. The device is designed to provide Flow/No Flow sensing. Tabulated set points specify maximum contact closure thresholds on increasing fluid flow. Re-establishment of a Normally Open contact occurs on decreasing fluid flow between set point and no flow.
3. Flow settings are based on a vertical position (inlet port down), using water at \(+20^{\circ} \mathrm{C}\) on increasing flow. Some variation in set point actuation will occur in other mounting orientations.
4. Use of 50 micron, or better, filtration is required.
5. Not recommended for use with oils.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{How to Order} \\
\hline \multicolumn{2}{|l|}{Set points (Fluid) (1/min)} & \multicolumn{2}{|l|}{Order numbers for Fluid} \\
\hline 0.2 & & 165840 & 166701 \\
\hline 1.0 & & 165841 & 166702 \\
\hline 2.0 & & 165842 & 166703 \\
\hline 3.8 & & 165843 & 166704 \\
\hline \multicolumn{4}{|l|}{GAS/AIR} \\
\hline \multicolumn{2}{|l|}{Set Points (1/min)(air)} & \multicolumn{2}{|c|}{Order numbers for Gases} \\
\hline 0.35 bar & 6.9bar & 1/4" NPT & R1/4 \\
\hline 12 & 28 & 165840-AIR & 166701-AIR \\
\hline 28 & 74 & 165841-AIR & 166702-AIR \\
\hline 70 & 158 & 165842-AIR & 166703-AIR \\
\hline 140 & 340 & 165843-AIR & 166704-AIR \\
\hline
\end{tabular}

\footnotetext{
yn"O૭"SJOSUOS-SUO6"MMM
}

Standard Models (Medium: water)
Specify the FS-3 flow switch using part numbers tabulated column above.
Special Requirements
GEMS caters to OEM needs with special configurations, including Gas (Air) flow and customer specified electrical terminations.

\section*{Pressure Drop Diagram}

\section*{Dimensions (in mm)}

\section*{FS-150 2.0-18.5 (\(/ / \mathrm{min}\)) with pre-adjusted set points \\ Straight flow path with low pressure drop \\ The FS-150 slim, inline switches reduce pressure drop to a minimum. \\ They incorporate a unique, dual-diameter, internal bore and piston configuration to minimise flow constriction. Liquids are able to smoothly pass around the piston and flow through the switch with little pressure loss to the down stream line.}
\begin{tabular}{ll}
Specifications & (all pressure data related to water at \(+20^{\circ} \mathrm{C}\)) \\
\hline Operating pressure & 14 bar \\
\hline Operating temperature & \(-17^{\circ} \mathrm{C}\) to \(+100^{\circ} \mathrm{C}\) \\
\hline Set point accuracy & \(\pm 15 \%\) \\
\hline Set point differential & \(20 \%\) max. \\
\hline Switch & \(\mathrm{SPST}, 20 \mathrm{VA}\) \\
\hline Inlet / outlet ports & \(1 / 2^{\prime \prime} \mathrm{NPT}\) male \\
\hline Electrical termination & \(6.3 \mathrm{~mm}\left(1 / 4^{\prime \prime}\right)\) spade terminals (2) \\
\hline Mounting orientation & Any position \\
\hline
\end{tabular}

\section*{How to Order}

Standard models (medium: water)
Specify part number based on flow setting and switch operation (see chart next column).

\section*{For liquids other than water}

Special calibration is available from GEMS for media other than water. Please consult factory with your requirements, including flow media, operating pressure, flow set point and liquid viscosity (SSU).
\begin{tabular}{c|c|c}
\multicolumn{2}{c}{ Order Numbers } & NO \\
\hline \begin{tabular}{c}
set points \\
\((1 / \mathrm{min})\)
\end{tabular} & 129660 & NC \\
\hline 2.0 & 129661 & 129666 \\
\hline 3.5 & 129662 & 129667 \\
\hline 7.5 & 129663 & 129668 \\
\hline 11.5 & 129664 & 129669 \\
\hline 15.0 & 129665 & 129670 \\
\hline 18.5 & & 129671 \\
\hline
\end{tabular}

\begin{tabular}{ll}
Housing: & Polypropylene (hydrolytically stable) \\
Piston: & Ryton®-R4 316 Stainless Steel \\
0-Ring & Viton® \\
Spring & 316 Stainless Steel
\end{tabular}

\section*{Pressure drop - typical}

Please note: For mineral oil applications please order brass piston instead of polysulphone piston. Add GE169 to order number e.g. 020-0290 - GE169
\begin{tabular}{l|c|c|c}
\multicolumn{4}{c}{ How to Order } \\
\begin{tabular}{c}
set points \\
\((1 / m i n)\)
\end{tabular} & & order number & \\
\hline & NO & NC & SPDT \\
\hline 0.4 & \(020-0290\) & \(020-0297\) & \(020-0304\) \\
1.0 & \(020-0291\) & \(020-0298\) & \(020-0305\) \\
2.0 & \(020-0292\) & \(020-0299\) & \(020-0306\) \\
3.0 & \(020-0293\) & \(020-0300\) & \(020-0307\) \\
4.0 & \(020-0294\) & \(020-0301\) & \(020-0308\) \\
6.0 & \(020-0295\) & \(020-0302\) & \(020-0309\) \\
\hline
\end{tabular}

Pressure drop diagram
(at min. set point adjustment)

\begin{tabular}{|c|}
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
flow to magnetically actuate a hermetically sealed reed switch isolated within the unit body When flow decreases the piston returns to its prior position by its own, weight and deactuates the reed switch. The FS-100E version (with pre-adjusted set points 5.0 . . 15.0 Vmin) operates with the same principle but a positive spring-return deactuates the switch when flow decreases. Mounting is possible in any position. \\
The FS-100E-A (adjustment range \(1.0 \ldots 16.0 \mathrm{~V} / \mathrm{min}\)) operates according to the same principle as the FS-100E with spring. The FS-100E-A is provided with an additional scale on the brass body on which set points as well as setting functions can be adjusted in one
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Specifications (all data related to water at \(+20^{\circ} \mathrm{C}\))
\begin{tabular}{|c|c|c|}
\hline & FS-100E & FS-100E-A \\
\hline Max. flow & \(24 \ldots 40\) //min. & \(551 / \mathrm{min}\) \\
\hline Max. operating pressure & 50 bar & 50 bar \\
\hline Max. pressure drop & 0.3 bar & 0.3 bar \\
\hline Max. operating temperature & \(+90^{\circ} \mathrm{C}\) & \(+90^{\circ} \mathrm{C}\) \\
\hline Set points & see order number & adjustable 1 ... \(16 \mathrm{I} / \mathrm{min}\) \\
\hline Switching function (related to increasing flow) & NO/NC; the required funcir the junction box & may be adjusted by moving \\
\hline Mounting position & see order number & any position \\
\hline Factory calibration position & vertical, inlet port down & vertical, inlet port down \\
\hline Repeatability & \(\pm 1 \%\) & \(\pm 1 \%\) \\
\hline Adjustment accuracy & \(\pm 10 \%\) & \(\pm 10 \%\) \\
\hline Hysteresis & max. 5\% & max. 20\% \\
\hline Mountings & G 3/8" & G 3/8" \\
\hline Electrical connections & \multicolumn{2}{|l|}{miniature plug connector with cable gland (max. cable ø: 6.5 mm)} \\
\hline Enclosure & IP 65 & IP65 \\
\hline Electrical data contact rating & \(40 \mathrm{VA}, 2 \mathrm{~A}, 220 \mathrm{~V}\) & \(40 \mathrm{VA}, 2 \mathrm{~A}, 220 \mathrm{~V}\) \\
\hline Weight & appr. 0.5 kg & appr. 0.5 kg \\
\hline
\end{tabular}

How to Order
\begin{tabular}{c|c|c|c}
\hline \multicolumn{2}{c|}{\begin{tabular}{c}
set points \\
\((I / m i n)\)
\end{tabular}} & \begin{tabular}{c}
Mounting \\
position
\end{tabular} & \begin{tabular}{c}
order \\
number
\end{tabular} \\
\hline FS-100E & 2.0 & vertical & \(020-0402\) \\
\hline & 3.0 & vertical & \(020-0403\) \\
\hline & 4.0 & vertical & \(020-0404\) \\
\hline & 5.0 & vertical & \(020-0405\) \\
\hline & 6.0 & vertical & \(020-0406\) \\
\hline & 5.0 & any position & \(020-0505\) \\
\hline & 6.0 & any position & \(020-0506\) \\
\hline & 7.0 & any position & \(020-0507\) \\
\hline & 8.0 & any position & \(020-0508\) \\
\hline & 10.0 & any position & \(020-0509\) \\
\hline & 11.0 & any position & \(020-0510\) \\
\hline & 12.0 & any position & \(020-0511\) \\
\hline & 13.0 & any position & \(020-0512\) \\
\hline & 14.0 & any position & \(020-0513\) \\
\hline & 15.0 & any position & \(020-0514\) \\
\hline & & any position & \(020-0515\) \\
\hline FS-100E-A & & any position & \(\mathbf{0 2 0 - 0 3 1 5}\) \\
\hline
\end{tabular}

Pressure Drop Diagram

Dimensions (in mm)

Set point adjustment/ Contact configuration

Adjust the housing to setting required

\section*{Wiring diagram}

yn'0э'sı0suəs-suə6'mмм
\begin{tabular}{l}
FS-3801 -7.6 (l/min) pre adjusted set points \\
Compact Flow Switch for High Inline Pressures \\
These rugged inline flow switches use 150 micron filtration and are less susceptible to \\
clogging than other high-pressure inline flow switches. The one-piece magnetic PPS \\
composite piston makes the FS-380 ideal for high-pressure applications such as industrial \\
cleaning equipment or high-pressure lubrication systems. \\
\begin{tabular}{ll}
Specifications & (all data related to water at \(+20^{\circ} \mathrm{C}\)) \\
\begin{tabular}{ll}
Operating pressure, max. & 70 Bar \\
\hline Operating temperature & \(-28.8^{\circ} \mathrm{C}\) to \(+135^{\circ} \mathrm{C}\) \\
\hline Set point accuracy & \(\pm 20 \%\) Maximum \\
\hline Set point differential & \(20 \%\) Maximum \\
\hline Switch & SPST, 20VA N.0.at no flow \\
\hline Inlet/outlet & \(3 / 8^{\prime \prime}\) NPT \\
\hline Electrical termination & 22 AWG, 0.6 m Polymeric leads \\
\hline Mounting orientation & Any position \\
\hline
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{How to Order}
\begin{tabular}{l|l|l}
\hline \multicolumn{2}{l}{\(3 / 8^{\prime \prime}\) NPT } \\
\hline Flow settings & \multicolumn{2}{|c}{ Part numbers } \\
\cline { 2 - 3 } I/min & Brass & Stainless Steel \\
\hline 1.0 & 168432 & 179992 \\
\hline 1.9 & 168433 & 179993 \\
\hline 3.8 & 168434 & 179994 \\
\hline 5.7 & 168435 & 179995 \\
\hline 7.6 & 178353 & 179996 \\
\hline
\end{tabular}

3/8" Tube Compression Fitting
\begin{tabular}{l|c|c}
\hline \multirow{2}{*}{\begin{tabular}{l}
Flow settings \\
I/min
\end{tabular}} & \multicolumn{2}{|c}{ Part numbers } \\
\cline { 2 - 3 } 1.0 & Brass \\
\hline 1.9 & & Stainless Steel \\
\hline 3.8 & & 177592 \\
\hline 5.7 & & 177593 \\
\hline 7.6 & & 177594 \\
\hline
\end{tabular}

Models with compression fittings are available for OEM users.
Contact Sales Office for details.

\begin{tabular}{ll}
Housing: & Brass or Stainless Steel \\
Piston: & PPS Composite \\
Spring: & 316 Stainless Steel \\
0-Ring: & Fluorocarbon
\end{tabular}

\section*{3/8" Tube End Compression Fitting}

\section*{yn'oo'sıosuəs-suə6/MMM}

\section*{Pressure Drop - FS-380}

Flow Rate - \(1 /\) min

FS-105E 0.005-150 I/min with adiustable setponins FS-107E 0.1 - \(90 \mathrm{I} / \mathrm{min}\) Viscosity Compensated with adustable setponints

Specifications
\begin{tabular}{|c|c|c|}
\hline & FS-105E & FS-107E \\
\hline Max flow & 100\% above max. set-point range & 100\% above max. set-point range \\
\hline Max operating pressure & 250 bar & 250 bar \\
\hline Pressure drop & 0.02 to 0.4 bar & 0.02 to 0.4 bar \\
\hline Operating temperature & \(-20^{\circ}\) to \(120^{\circ} \mathrm{C}\) & \(-20^{\circ}\) to \(120^{\circ} \mathrm{C}\) \\
\hline Adjustable range & see order number & see order number \\
\hline Switching function & N0 with no flow, SPDT available & N0 with no flow, SPDT available \\
\hline Mounting orientation & Any position & Any position \\
\hline Repeatability & 1\% of range & 1\% of range \\
\hline Adjustment scale accurary & +/-10\% & +/-5\% \\
\hline Hysteresis & max 20\% & max 20\% \\
\hline Mountings & G1/4, G1/2, G1 & G1/2, G1 \\
\hline Electrical connection & \begin{tabular}{l}
Din 43650, \\
Mini for G1/4, G1/2, Std for G1
\end{tabular} & Din 43650 \\
\hline Enclosure & IP 65 & IP 65 \\
\hline Electrical contact rating & NO - 250V, 1A, 100VA - G1 port NO-220V, 1A, 100VA - G1/2 port NO - 200V, 1A, 20VA - G1/4 port SPDT - 250V, 1.5A, 50 SPDT - 200V, 1A 20VA & NO - 250V, 3A, 100VA - G1 port NO-220V, 1A, 100VA-G1/2 port
OVA - G1, G1/2
A - G1/4 port \\
\hline Weight (approx) & G1/4-140g, G1/2-350 & 50g, G1-1000g \\
\hline
\end{tabular}

Dimensions (in mm)

Dimension
SW D B \(\quad\) G \(\quad\) T \(\quad\) L \(\begin{array}{llllll}27 & 31 & 52 & 1 / 2 & 14 & 90\end{array}\) \(\begin{array}{llllll}41 & 47 & 72 & 1 & 17 & 130\end{array}\) Meter 17 mm wide

\section*{Wiring Diagram}

Order numbers for FS-107E
\begin{tabular}{|c|c|c|c|c|c|}
\hline Adj Range L/min & \begin{tabular}{l}
Order \\
'NO'
\end{tabular} & Number "SPDT' & Port & \multicolumn{2}{|l|}{Order No with visual indication 'NO' 'SPDT"} \\
\hline 0.1-0.8 & 027-0300 & 027-0320 & G1/2" & & \\
\hline 0.4-1.6 & 027-0301 & 027-0321 & G1/2" & & \\
\hline 0.8-3 & 027-0302 & 027-0322 & G1/2" & & \\
\hline 2-7 & 027-0303 & 027-0323 & G1/2" & & \\
\hline 0.1-0.8 & 027-0304 & 027-0324 & G1" & 027-0340 & 027-0360 \\
\hline 0.5-1.5 & 027-0305 & 027-0325 & G1" & 027-0341 & 027-0361 \\
\hline 1-4 & 027-0306 & 027-0326 & G1" & 027-0342 & 027-0362 \\
\hline 2-8 & 027-0307 & 027-0327 & G1" & 027-0343 & 027-0363 \\
\hline 3-10 & 027-0308 & 027-0328 & G1" & 027-0344 & 027-0364 \\
\hline 5-15 & 027-0309 & 027-0329 & G1" & 027-0345 & 027-0365 \\
\hline 8-24 & 027-0310 & 027-0330 & G1" & 027-0346 & 027-0366 \\
\hline 10-30 & 027-0311 & 027-0331 & G1" & 027-0347 & 027-0367 \\
\hline 15-45 & 027-0312 & 027-0332 & G1" & 027-0348 & 027-0368 \\
\hline 20-60 & 027-0313 & 027-0333 & G1" & 027-0349 & 027-0369 \\
\hline 30-90 & 027-0314 & 027-0334 & G1" & 027-0350 & 027-0370 \\
\hline
\end{tabular}

\section*{How to Order}

Order numbers for FS-105E
\begin{tabular}{|c|c|c|c|}
\hline Adj Range L/min & \begin{tabular}{l}
Order \\
'NO'
\end{tabular} & Number "SPDT' & Port \\
\hline \(5-60 \mathrm{ml}\) & 027-0100 & 027-0120 & G1/4" \\
\hline \(20-140 \mathrm{ml}\) & 027-0101 & 027-0121 & G1/4" \\
\hline 0.1-0.6 & 027-0102 & 027-0122 & G1/4" \\
\hline 0.2-1.2 & 027-0103 & 027-0123 & G1/4" \\
\hline 0.4-2.0 & 027-0104 & 027-0124 & G1/4" \\
\hline 0.5-3.0 & 027-0105 & 027-0125 & G1/4" \\
\hline 1.0-5.0 & 027-0106 & 027-0126 & G1/4" \\
\hline 0.02-0.2 & 027-0107 & 027-0127 & G1/2" \\
\hline 0.1-0.6 & 027-0108 & 027-0128 & G1/2" \\
\hline 0.4-1.8 & 027-0109 & 027-0129 & G1/2" \\
\hline 0.8-3.2 & 027-0110 & 027-0130 & G1/2" \\
\hline 2-7 & 027-0111 & 027-0131 & G1/2" \\
\hline 3-13 & 027-0112 & 027-0132 & G1/2" \\
\hline 4-20 & 027-0113 & 027-0133 & G1/2" \\
\hline 8-30 & 027-0114 & 027-0134 & G1/2" \\
\hline 15-45 & 027-0115 & 027-0135 & G1" \\
\hline 30-90 & 027-0116 & 027-0136 & G1" \\
\hline 60-150 & 027-0117 & 027-0137 & G1" \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline FS-200 2.0- & \(0(1 / \mathrm{min})\) with pre-adjusted set points \\
\hline \multicolumn{2}{|l|}{The FS-200 range of flow switches offer accurate flow detection, with 1\% repeatability, with a wide range of flow and port sizes. The durable construction delivers long life repeatability in either water or oil. The design of large flow paths keep pressure drop low, thus are ideal for detection of flow in high volume lubrication, cooling or process applications.} \\
\hline \multicolumn{2}{|r|}{(all data related to water at \(+20^{\circ} \mathrm{C}\))} \\
\hline Max. flow & see order numbers \\
\hline Max. operating pressure & 27 bar at \(+20^{\circ} \mathrm{C}\) \\
\hline Proof pressure & 45 bar \\
\hline Temperature range & \(-20^{\circ} \mathrm{C} . . .150^{\circ} \mathrm{C}\) \\
\hline Set points & see order numbers \\
\hline Switching function (related to increasing flow) & SPDT \\
\hline Factory calibration position & horizontal, electrical connection up \\
\hline Mounting orientation & any position \\
\hline Repeatability & \(\pm 1 \%\) \\
\hline Adjustment accuracy & \(\pm 10 \%\) \\
\hline Hysteresis & max. 15\% \\
\hline Mounting & \begin{tabular}{l}
1" NPT...2" NPT \\
(see "dimensions" and "order number")
\end{tabular} \\
\hline Electrical connections & - lead wire: Polymeric, 18 AWG (length: approx. 0.6m) \\
\hline Enclosure & \begin{tabular}{l}
- IP 44 (with lead wire) \\
- IP 54 (with conduit box IP65 [with K6])
\end{tabular} \\
\hline Electrical data contact rating & 20 VA ; 0,5 A; 250 V ~ \\
\hline Weight & see "dimensions" \\
\hline
\end{tabular}

\section*{How to Order}
\begin{tabular}{|c|c|c|c|c|}
\hline Set point (1/min) & Mounting & Max. flow (I/min) & Order number Housing Bronze & Order number Housing Stainless Steel \\
\hline \[
\begin{aligned}
& 2.0 \\
& 4.0 \\
& \hline
\end{aligned}
\] & \multirow{4}{*}{\[
\begin{gathered}
1^{\prime \prime} \\
\text { NPT }
\end{gathered}
\]} & \multirow{4}{*}{80} & \[
\begin{array}{|l|}
\hline 27051 \\
27052 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 27059 \\
27060 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 7.5 \\
& 11.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|l}
27053 \\
27054 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 27061 \\
& 27062
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 15.0 \\
& 19.0
\end{aligned}
\] & & & \[
\begin{array}{|l}
27055 \\
27056 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 27063 \\
& 27064
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 22.5 \\
& 30.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 27057 \\
& 27058
\end{aligned}
\] & \[
\begin{aligned}
& 27065 \\
& 27066
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 4.0 \\
& 7.5 \\
& \hline
\end{aligned}
\] & \multirow{4}{*}{\[
\begin{gathered}
11 / 4^{\prime \prime} \\
\text { NPT }
\end{gathered}
\]} & \multirow{4}{*}{140} & \[
\begin{array}{|l|}
\hline 27067 \\
27068 \\
\hline
\end{array}
\] & \[
\begin{array}{l|}
27076 \\
27077 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 15.0 \\
& 22.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|l|}
\hline 27069 \\
27070 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 27078 \\
27079 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline 30.0 \\
& 37.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 27071 \\
& 27072 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27080 \\
& 27081 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 45.0 \\
& 60.0 \\
& 75.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{aligned}
& 27073 \\
& 27074 \\
& 27075 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27082 \\
& 27083 \\
& 27084
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline 6.0 \\
& 11.5 \\
& \hline
\end{aligned}
\] & \multirow{4}{*}{\[
\begin{gathered}
11 / 2^{\prime \prime} \\
\text { NPT }
\end{gathered}
\]} & \multirow{4}{*}{200} & \[
\begin{array}{|l|}
\hline 27085 \\
27086 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 27093 \\
27094 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 19.0 \\
& 28.5
\end{aligned}
\] & & & \[
\begin{array}{|l}
27087 \\
27088
\end{array}
\] & \[
\begin{aligned}
& 27095 \\
& 27096
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline 37.5 \\
& 57.0 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|l|}
\hline 27089 \\
27090 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 27097 \\
27098 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& \hline 75.0 \\
& 115.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 27091 \\
& 27092
\end{aligned}
\] & \[
\begin{aligned}
& 27099 \\
& 27100 \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 7.0 \\
& 15.0 \\
& \hline
\end{aligned}
\] & \multirow{4}{*}{\[
\begin{gathered}
2^{\prime \prime} \\
\text { NPT }
\end{gathered}
\]} & \multirow{4}{*}{350} & \[
\begin{array}{|l|}
\hline 27101 \\
27102 \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline 27109 \\
27110 \\
\hline
\end{array}
\] \\
\hline \[
\begin{aligned}
& 19.0 \\
& 37.5 \\
& \hline
\end{aligned}
\] & & & \[
\begin{array}{|l|}
\hline 27103 \\
27104 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 27111 \\
& 27112
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 57.0 \\
& 95.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 27105 \\
& 27106
\end{aligned}
\] & \[
\begin{aligned}
& 27113 \\
& 27114
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 132.5 \\
& 190.0
\end{aligned}
\] & & & \[
\begin{aligned}
& 27107 \\
& 27108
\end{aligned}
\] & \[
\begin{aligned}
& 27115 \\
& 27116
\end{aligned}
\] \\
\hline
\end{tabular}

Pressure Drop Diagram see previous page

\section*{Wiring Diagram}

\section*{Terminal boxes}

Conduit style Order Number: 912-0615

Order Number: 912-0625

Order numbers are valid for units with the electrical connection "lead wire". It you need a unit with the electrical connection "terminal box", please select the respective "lead wire" order number and add: "... with mounted terminal box \(912-0615\) or 912-0625. See drawing (previous page)

FS-500 1 - \(18.5(1 / \mathrm{min})\) with preadiusted set points
The FS-500 offers economical flow monitoring, with a variety of switch actuation points and low pressure drop. The FS-500 is designed for ease of maintenance, as the bonnet and shuttle can be removed, leaving the housing and pipework connections intact. All wetted parts are manufactured from polypropylene or stainless steel, making the FS-500 ideal for a wide range of chemical and temperature applications.
\begin{tabular}{ll}
\hline Specifications & \\
\hline Operating pressure & 7 bar at \(20^{\circ} \mathrm{C}, 3.5\) bar at \(80^{\circ} \mathrm{C}\) \\
\hline Temperature & \(+100^{\circ} \mathrm{C}\) \\
\hline Set point differential & \(\pm 20 \%\) maximum \\
\hline Set point accuracy & \(\pm 20 \%\) \\
\hline Switch & SPST 20VA, N.O., 120-240VAC or VDC \\
\hline Inlet/outlet ports & \(3 / 4^{\prime \prime}\) NPT, R3/4" \\
\hline Electrical termination & 0.6 m lead wire \\
\hline Mounting orientation & any position \\
\hline
\end{tabular}

\section*{How to Order}

Order numbers for FS-500
\begin{tabular}{l|l|l}
\hline Flow rate & R3/4" parallel & \(3 / 4^{\prime N}\) NPT \\
\hline \(1 \mathrm{I} / \mathrm{min}\) & \(\mathbf{1 7 5 1 7 1}\) & 170231 \\
\hline \(2 \mathrm{I} / \mathrm{min}\) & \(\mathbf{1 7 5 1 7 2}\) & 170232 \\
\hline \(3.5 \mathrm{I} / \mathrm{min}\) & \(\mathbf{1 7 5 1 7 3}\) & 170233 \\
\hline \(10 \mathrm{I} / \mathrm{min}\) & \(\mathbf{1 7 5 1 7 4}\) & 170234 \\
\hline \(18.5 \mathrm{I} / \mathrm{min}\) & \(\mathbf{1 7 5 1 7 5}\) & 170235 \\
\hline
\end{tabular}

FS-10798E 2.0-75 (1/min) variable adustment of set points

These externally adjustable switches are ideal for protecting machine tools from coolant flow failure, for protecting bearings from loss of lubricant or to assure proper air flow. They offer an infinite number of flow settings at pressures up to 68 bar, with low pressure drop and precise repeatability.
The adjusting vane is easily field adjustable using an ordinary flat-bladed screwdriver. The adjustment is set-screw-locked for tamper-free operation after field calibration.

\section*{Specifications}
(all data related to water at \(+20^{\circ} \mathrm{C}\))
\begin{tabular}{ll}
\hline Max. flow & \(85 \mathrm{I} / \mathrm{min}\) \\
\hline Max. operating pressure & 68 bar \\
\hline Proof pressure & 100 bar \\
\hline Temperature range & \begin{tabular}{l}
- with Polysulfone piston (standard), with cable, with \\
plug connector: \(-20^{\circ} \mathrm{C} . . .80^{\circ} \mathrm{C}\) \\
- with metal piston and terminal box: \(-20^{\circ} \mathrm{C} . . .+150^{\circ} \mathrm{C}\) \\
\hline Adjustment range \\
\hline Switching function \\
(related to increasing flow)
\end{tabular} \\
\hline Mounting orientation & - -NC, NO, SPDT
\end{tabular}

\section*{How to Order}

Note: For mineral oil applications please order brass piston instead of polysulfone piston, add -GE169 to type number e.g. FS-10798E-M-P-W-GE169

Pressure Drop Diagram
(at min. set point adjustment)

Dimensions (in mm)

Terminal Box

Plug Connector

Wiring Diagram

FS-550E 15.0-125.0 (\(/ / \mathrm{min}\))
with pre-adjusted set points
SWITCHES
Standard FS-550E switches sense liquid flow in either direction to monitor flow/no-
flow conditions. The paddle is trimmed during installation to permit switch actuation at
the desired flow rate. As flow increases in a pipe, the paddle of the switch pivots to
move out of the liquid path, producing less than 200 mb of pressure drop regardless of
pipe size.
Specifications (all data related to water at \(+20^{\circ} \mathrm{C}\))
\begin{tabular}{ll}
\hline Max. flow & determined by the pipe's inside diameter \\
\hline Max. operating pressure & 55 bar \\
\hline Proof pressure & 82 bar \\
\hline Max. pressure drop & 0.2 bar \\
\hline Temperature range & \begin{tabular}{l}
cable: \(-20^{\circ} \mathrm{C} \ldots+80^{\circ} \mathrm{C}\) \\
terminal box: \(-20^{\circ} \mathrm{C} . .+150{ }^{\circ} \mathrm{C}\)
\end{tabular} \\
\hline Set points & see set point adjustment guideline \\
\hline \begin{tabular}{l}
Switching function \\
(related to increasing flow)
\end{tabular} & - SPDT \\
\hline Mounting orientation & vertical, electrical connection up \\
\hline Repeatability & \(\pm 5 \%\) \\
\hline Adjustment accuracy & \(\pm 25 \%\) \\
\hline Hysteresis & max. \(50 \%\) \\
\hline Mounting & R1" \\
\hline Electrical connections & - cable: PVC,3 \(\times 0.34 \mathrm{~mm} 2\) (length: approx. 1 m\()\) \\
\hline Enclosure & - terminal box \\
\hline Electrical data contact rating & - SPDT max. \(\quad 20 \mathrm{VA}, 0.5 \mathrm{~A}, 250 \mathrm{~V} \sim\) \\
\hline Weight & 0.6 kg \\
\hline
\end{tabular}
How to Order
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l}
Electrical \\
Connection
\end{tabular} & Brass & Stainless Steel \\
\hline Cable & \(020-3493\) \\
Terminal box & \(\mathbf{0 2 0 - 3 4 9 7}\) & \(020-3495\) \\
\hline
\end{tabular}
Set Point Adjustment (approximate)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Cut-off size} & \multicolumn{8}{|c|}{Pipeline sizes} \\
\hline & \multicolumn{2}{|c|}{11/2"} & \multicolumn{2}{|c|}{\(2 "\)} & \multicolumn{2}{|c|}{\(21 / 2^{\prime \prime}\)} & \multicolumn{2}{|c|}{\(3 "\)} \\
\hline & \multicolumn{8}{|c|}{Set points (1/min) with increasing and decreasing flow} \\
\hline & \# & \% & \# & - & \# & - & - \# & - \\
\hline 11/2" & 57 & 42 & 106 & 80 & 144 & 114 & & \\
\hline 2" & & & 84 & 57 & 103 & 76 & 182 & 144 \\
\hline \(21 / 2^{\prime \prime}\) & & & & & 80 & 53 & 152 & 99 \\
\hline 3 " & & & & & & & 118 & 76 \\
\hline
\end{tabular}

Mounting Method

\section*{Wiring Diagram}

Dimensions (in mm)

yn'00's」osuəs-suə6'MMM

\section*{RotorFlow \({ }^{\circledR}\) Visual Indicators with Switch or Continuous Output Options}

The Gems Sensors generation of rotorflow indicators offer high performance and durability, all at an affordable cost.
Three distinct options are available, all boasting broad chemical, pressure and temperature capabilities.

\section*{RFI RotorFlow Indicators}

Simple visual confirmation of flow, the RFI indicator provides the low cost answer.

\section*{RFS RotorFlow Indicator and Switch}

Visual indication plus switch, adjustable over the required flow rate. High reliable system guarding against jamming or false actuation.

\section*{RFO RotorFlow Indicator and Output}

Visual indicator plus continuous output. Pulse or analogue DC voltage output proportional to the flow rate. Easy integration into all digital logic families.

\section*{Construction}

- Flow range from 0.4 to \(225 \mathrm{I} / \mathrm{min}\)
- Bright, visual indication
- Choice of pulsed analogue DC output or adjustable 1 amp switched output
- Available in high performance plastic, brass or Stainless Steel housing

\section*{DM21 Series - 1/8 DIN Rate Meter/Totalizer}
\begin{tabular}{|c|c|}
\hline - Large 18mm high digits (LED) & - Standard outputs: two NPN \\
\hline Programmable colour change display based on an event (red/green) & \begin{tabular}{l}
transistors and one relay (2nd relay optional) \\
CE Approved
\end{tabular} \\
\hline Display configurable for update time, minimum number of pulses, and forced zero time & \[
\begin{aligned}
& \text { Dtandard 1.8 DIN size } \\
& \text { (92mmx45mm cutout) } \\
& \text { Easy programming }
\end{aligned}
\] \\
\hline Optional linear analog output relative to rate & - Include output 1 and 2 status annunciators \\
\hline Specifications & \\
\hline Supply voltage 90 & \(90-264 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, 4\) watts \\
\hline Sensor Power Supply 9-1 & 9-15 Vdc, Unregulated \\
\hline Output N & NPN Open Collector, 30 VDC Max, 100 mA Max \\
\hline Relay SP & SPDT, 5A Resistive @ 110 VAC \\
\hline Analog Output 0-2 & 0-20 mA, 4-20 mA, 0-10 V, 2-10 V, 0-5V, 1-5V \\
\hline
\end{tabular}

\section*{Operating Principle}

VISUAL ONLY
As liquid passes through the RotorFlow body, the rotor spins at a rate proportional to the flow.

\section*{OUTPUT VERSIONS}
1. As liquid passes through the RotorFlow body the magnetic rotor spins at a rate proportional to flow. This causes a series of magnetic fields (the rotor vanes) to excite the Hall Effect sensor, producing a series of voltage pulses.
2. The output pulses are at the same voltage level as the input (4.5 - 24 Vd.c.) with a frequency proportional to the flow rate, The output signal can be utilised by digital rate meters, totalisers or other electronic controllers.

\section*{SWITCH}
1. RFS Type switches incorporate state-of-the-art circuitry to compare the frequency of incoming pulses to an adjustable, preset frequency. When the pulse rate meets or exceeds the preset value, the SPDT relay closes. When the pulse rate falls below the preset value, the output relay opens. This unique design eliminates the possibility of a RotorFlow switch from remaining in a 'switch actuated' mode, if the rotor jams accidentally.
2. RotorFlow Indicators may be mounted with flow entering either port. Performance is optimised by positioning ports at the top of the unit, in a horizontal plane.
\begin{tabular}{l|l}
\multicolumn{2}{c}{ How to Order } \\
\hline Description & Part No. \\
\hline DM21 Rate Meter/Totaliser & DM2150000 \\
\hline DM21 Rate Meter/Totaliser + 2nd Relay & DM2151000 \\
\hline DM21 Rate Meter/Totaliser + 2nd Relay \\
+ Analog Output & DM2153000 \\
\hline
\end{tabular}

\footnotetext{
* With use of low flow adaptor supplied, see page 70
}

\section*{RotorFlow - RFO and RFA Types}
4.5-24 VDC Pulsed Output - RFO
\(0-10\) V, RFA
Gems Sensors popularised the Rotor-Flow's paddlewheel design by combining high visibility rotors with solid-state electronics that are packaged into compact, panel mounting housings. They provide accurate flow rate output with integral visual confirmation ... all with an unprecedented price/performance ratio.
 each pass of magnetic field

\section*{Specifications}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Wetted materials} \\
\hline Body & Polypropylene (Hydrolytically Stable, Glass \\
\hline & Reinforced), \\
\hline & Stainless Steel or Brass \\
\hline Rotor pin & Ceramic \\
\hline Rotor & Ryton Composite, Colour: Black \\
\hline Lens & Polysulfone \\
\hline O-Ring & Buna N (Metal body = Viton) \\
\hline Max. operating pressure & \begin{tabular}{ll}
Polypropylene Body: & 7 bar \\
Metal Body: & 14 bar
\end{tabular} \\
\hline Max. operating temperature & \(\begin{array}{ll}\text { Polypropylene Body: } & 80^{\circ} \mathrm{C} \\ \text { Metal: } & 100^{\circ} \mathrm{C}\end{array}\) \\
\hline Electronics (both bodies) & \(65^{\circ} \mathrm{C}\) Ambient \\
\hline Max. viscosity & 45 cSt \\
\hline Input power & 4.5 to 24 Vdc , (24Vdc Regulated Supply for RFA models) \\
\hline Output signal & \begin{tabular}{l}
4.5 to 24 Vdc Pulse, Pulse Rate dependent on Flow Rate, \\
Port Size and Range \\
0 to 10 V , available (RFA model), consult Sales Office
\end{tabular} \\
\hline Max. current source output & 70 mA \\
\hline Frequency output range & 25 Hz (Low Flow) to 225 Hz (High Flow) \\
\hline Electrical termination & AWG 22 PVC-Jacketed Cable, Length 60 cm Colour Code: Red \(=+\) Vdc, Black \(=\) Ground, White = Signal output \\
\hline Typical pressure drop & See Graphs \\
\hline
\end{tabular}

High Resolution Black Rotor
Ryton composite. Each of the six rotor arms are magnetized.

\section*{Signal Output}

Output signal for RFO Types is an on/off pulse of the DC voltage supplied to the unit, it is compatible with all digital logic families. Input voltage range is 4.5 to \(24 \mathrm{Vd} . \mathrm{C}\).

Frequency of the output pulse is proportional to the flow rate and ranges from approximately 25 Hz at Iow flow to 225 Hz at high flow. See order number for more information.

Following examples are at 12 Vdc supply

\section*{HighFlow}

* With use of Low-Flow-Adapter supplied.

See page 70 for more information.
For dimensions see page RFS
Please consult factory for detailed flow rate / frequency curves.

\section*{How to Order}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Body & Port & \multicolumn{2}{|c|}{Flow Ranges (1/min)} & Output (Hz) & \multicolumn{2}{|l|}{RFO} & RFA \\
\hline Material & Size & Low Range* & Standard Range & Approximate & BSP & NPT & \\
\hline Polypropylene & \[
\begin{aligned}
& 1 / 4^{\prime \prime} \\
& 1 / 2^{\prime \prime}
\end{aligned}
\] & \[
\begin{aligned}
& 0.4 \text { to } 4.0(\pm 7 \%) \\
& 6.0 \text { to } 45.0(\pm 7 \%)
\end{aligned}
\] & \[
\begin{gathered}
2.0 \text { to } 20.0(\pm 7 \%) \\
15.0 \text { to } 75.0(\pm 15 \%) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
15-180 \\
20-190
\end{tabular} & \begin{tabular}{l}
155421BSPP \\
155481BSPP
\end{tabular} & \[
\begin{aligned}
& 155421 \\
& 155481 \\
& \hline
\end{aligned}
\] & Consult Factory \\
\hline Brass & \[
\begin{gathered}
1 / 4^{\prime \prime} \\
1 / 2^{\prime \prime} \\
3 / 4^{\prime \prime} \\
1^{\prime \prime}
\end{gathered}
\] & \[
\begin{gathered}
0.4 \text { to } 4.0(\pm 7 \%) \\
6.0 \text { to } 45.0(\pm 7 \%)
\end{gathered}
\] & \[
\begin{gathered}
2.0 \text { to } 20.0(\pm 7 \%) \\
15.0 \text { to } 75.0(\pm 15 \%) \\
20 \text { to } 112.5(\pm 15 \%) \\
30 \text { to } 225(\pm 15 \%)
\end{gathered}
\] & \[
\begin{aligned}
& 15-180 \\
& 20-190 \\
& 25-210 \\
& 15-180
\end{aligned}
\] & \begin{tabular}{l}
156261BSPP \\
156262BSPP \\
194761BSPP \\
194762BSPP
\end{tabular} & \[
\begin{aligned}
& 156261 \\
& 156262 \\
& 194761 \\
& 194762
\end{aligned}
\] & Consult Factory \\
\hline Stainless Steel & \[
\begin{gathered}
9 / 16-18 \text { UNF } \\
1 / 2^{\prime \prime} \\
3 / 4^{\prime \prime} \\
1^{\prime \prime}
\end{gathered}
\] & \[
\begin{aligned}
& 0.4 \text { to } 4(\pm 7 \%) \\
& 6 \text { to } 45(\pm 7 \%)
\end{aligned}
\] & \[
\begin{gathered}
2 \text { to } 20.0(\pm 7 \%) \\
15.0 \text { to } 75.0(\pm 15 \%) \\
20 \text { to } 112.5(\pm 15 \%) \\
30 \text { to } 225(\pm 15 \%)
\end{gathered}
\] & \[
\begin{aligned}
& 15-180 \\
& 20-190 \\
& 25-210 \\
& 15-180
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
165075BSPP \\
194763BSPP \\
194764BSPP
\end{tabular} & \[
\begin{aligned}
& 165071 \\
& 165075 \\
& 194763 \\
& 194764
\end{aligned}
\] & Consult Factory \\
\hline
\end{tabular}

\footnotetext{
* With use of Low-Flow-Adaptor supplied
}
flow
SWITCHES

\section*{RotorFlow - RFS Types Flow Setpoint Switching}

\section*{}

Switch Set Point Calibration With LED Signal (RFS Type)
With the unit installed in the line and power supplied, complete the following steps to calibrate switch actuation point with proper flow rate. A small flat-blade screwdriver is the only tool required.
1. Adjust liquid flow in the line to the rate at which switch actuation is desired.
2. Insert screwdriver into opening on backside of housing and fit blade into the potentiometer adjustment screw inside.
3. If LED is not illuminated, slowly turn screwdriver counterclockwise and stop as soon as LED illuminates.
4. If LED is illuminated, turn screwdriver clockwise until LED light goes out. Then, slowly turn screwdriver counterclockwise and stop as soon as LED illuminates.

\section*{How to Order}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Body \\
Material
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Port \\
Size
\end{tabular}} & \multicolumn{2}{|c|}{Flow Ranges (I/min)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Input \\
Power
\end{tabular}} & \multicolumn{2}{|c|}{Order Number} \\
\hline & & Low Range* & Standard Range & & BSP & NPT \\
\hline \multirow[t]{2}{*}{Polypropylene} & 1/4" & 0.4 to 4.0 & 2.0 to 20.0 & \[
\begin{aligned}
& 24 \mathrm{VDC} \\
& 110 \mathrm{VAC}
\end{aligned}
\] & \begin{tabular}{l}
155425BSPP \\
155876BSPP
\end{tabular} & \[
\begin{aligned}
& 155425 \\
& 155876
\end{aligned}
\] \\
\hline & 1/2" & 6.0 to 45.0 & 15.0 to 75.0 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & 155485BSPP 155886BSPP & \[
\begin{aligned}
& 155485 \\
& 155886
\end{aligned}
\] \\
\hline \multirow{4}{*}{Brass} & 1/4" & 0.4 to 4.0 & 2.0 to 20.0 & \[
\begin{aligned}
& 24 \mathrm{VDC} \\
& 110 \mathrm{VAC}
\end{aligned}
\] & \begin{tabular}{l}
156265BSPP \\
156266BSPP
\end{tabular} & \[
\begin{aligned}
& 156265 \\
& 156266
\end{aligned}
\] \\
\hline & 1/2" & 6.0 to 45.0 & 15.0 to 75.0 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \begin{tabular}{l}
156268BSPP \\
156269BSPP
\end{tabular} & \[
\begin{aligned}
& 156268 \\
& 156269
\end{aligned}
\] \\
\hline & \(3 / 4 "\) & --- & 20 to 112.5 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \begin{tabular}{l}
180395BSPP \\
180396BSPP
\end{tabular} & \[
\begin{aligned}
& 180395 \\
& 180396
\end{aligned}
\] \\
\hline & \(1 "\) & --- & 30 to 225 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 181688BSPP } \\
& \text { 181689BSPP }
\end{aligned}
\] & \[
\begin{aligned}
& 181688 \\
& 181689
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Stainless \\
Steel
\end{tabular}} & 9/16" - 18UNF & 0.4 to 4 & 2.0 to 20.0 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \[
\begin{aligned}
& N / A \\
& N / A
\end{aligned}
\] & \[
\begin{aligned}
& 165073 \\
& 165074
\end{aligned}
\] \\
\hline & 1/2" & 6 to 45 & 15.0 to 75.0 & \[
\begin{aligned}
& 24 \text { VDC } \\
& \text { 110VAC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 165077BSPP } \\
& \text { 165078BSPP }
\end{aligned}
\] & \[
\begin{aligned}
& 165077 \\
& 165078
\end{aligned}
\] \\
\hline & \(3 / 4\) " & --- & 20 to 112.5 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 181691BSPP } \\
& \text { 181692BSPP }
\end{aligned}
\] & \[
\begin{aligned}
& 181691 \\
& 181692
\end{aligned}
\] \\
\hline & \(1 "\) & --- & 30 to 225 & \[
\begin{aligned}
& 24 \text { VDC } \\
& 110 \text { VAC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 181693BSPP } \\
& \text { 181694BSPP }
\end{aligned}
\] & \[
\begin{aligned}
& 181693 \\
& 181694
\end{aligned}
\] \\
\hline
\end{tabular}
* With use of Low-Flow-Adapter supplied,

\section*{Low Flow Range Units}

High Flow Units

\section*{Installation and Maintenance}

A proper installation will enhance RotorFlow sensor performance. Install using standard pipe fitting tools; horizontal fluid lines are recommended. For further installation and maintenance recommendations, refer to one of the following instruction bulletins: RFO Types - Part Number 157258; RFI Types - Part Number 157259; RFS Types - Part Number 157261. Since their function is to monitor dynamic fluid flow, naturally the rotor will react to turbulence, pulsation, entrained air, and other flow anomalies induced in the flow stream by other process hardware. For optimum performance, install RotorFlow units where nominal flow conditions exist with ports located at the top. Incoming flow may be placed to either port; a minimum of 20 cm of straight pipe on the inlet side is required. When operating in the low flow range, the supplied Low Flow Adapter must be installed in the incoming port.

RotorFlow sensors connect to piping via NPT mating thread forms. The use of an appropriate thread sealant is necessary to assure a leak-tight connection. Permatex "No More Leaks" or 2 wraps of Teflon tape are the only sealants recommended for GEMS flow sensors. 150 micron filtration is recommended. However, should foreign particles enter RotorFlow sensor, accumulation is easily cleared by removing the lens from the body. The lens is removed by turning its centre rib \(45^{\circ}\) counter-clockwise, and then pulling it out. To reinstall the lens, simply reverse the process.
Dimensions (in
RFA, RFO, RFS
Polypropylene Bodies

\section*{Metal Bodies}

\begin{tabular}{c|c|c|c|c|c}
T & \(\mathbf{W}\) & \(\mathbf{H}\) & \begin{tabular}{c}
\(\mathbf{D}\) \\
DC models
\end{tabular} & \begin{tabular}{c}
\(\mathbf{D}\) \\
AC models
\end{tabular} & \(\mathbf{P}\) \\
\hline \(1 / 4\) & 77 & 60 & 61 & 114 & 20 \\
\hline \(1 / 2\) & 77 & 60 & 61 & 114 & 22 \\
\hline \(3 / 4\) & 100 & 66 & 75 & 121 & 27 \\
\hline 1 & 100 & 66 & 75 & 121 & 27 \\
\hline
\end{tabular}

\section*{Panel Mounting}

Any RotorFlow sensors may be panel mounted using holes integrated into the bodies.
Two (2) mountings ears are provided at the body centre line to receive \(3.5 \mathrm{~mm} \varnothing\) self tapping screws (e.g. DIN 7971-B \(3,5 \times 19\)) to accommodate panel mounting of the plastic RotorFlow units.
Note: ANSI T type 23 self-tapping screw are recommended. They may be replaced with standard machine screws if reinstallation should be required.

Important: In either case, pressure must be relieved from the system prior to sensor clean-out.

\section*{Low Flow Applications}

A low flow adaptor is supplied with all Rotorflow units. It is used to produce accurate response at low flow rates. Install the adapter, as shown above, in the port selected for incoming flow.

\section*{Specifications}
\begin{tabular}{ll}
\begin{tabular}{l}
Wetted materials \\
Body \\
Turbine \\
Bearings
\end{tabular} & \begin{tabular}{l}
Nylon 12 \\
Nylon 12 Composite \\
PTFE/15\% Graphite
\end{tabular} \\
\hline Operating pressure & 14 bar max \\
\hline Burst pressure & 170 bar \\
\hline Operating temperature & \(-20^{\circ} \mathrm{C}\) to \(100^{\circ} \mathrm{C}\) (Ambient \(+80^{\circ} \mathrm{C}\) for cable) \\
\hline Viscosity & 32 to \(81 \mathrm{SSU}(.8\) to 16 Centistokes) \\
\hline Filter & \(<50\) Microns \\
\hline Input power & 5 to 24 VDC @ 8 mA \\
\hline Output & NPN Sinking Open Collector @ 50 mA Maximum \\
& \((1\) to 2.2K Ohm Pull-Up Resistor Required) \\
\hline (Hz Output) \\
\hline Accuracy & \(\pm 3 \%\) of Reading \\
\hline Repeatability & \(0.5 \%\) of Full Scale \\
\hline Electrical connection & Spade Terminals \(2.8 / 6.3 \times .8 \mathrm{~mm}\) : 1m cable \\
\hline Inlet/outlet ports & \(3 / 8 "\) NPT Male : G 3/8" Male \\
\hline
\end{tabular}

\section*{How to Order}

Specify Part Number based on desired flow range and thread type
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Flow & \multirow[t]{3}{*}{Pulses per Litre} & \multirow[t]{3}{*}{Frequency Output} & \multicolumn{4}{|c|}{Part Number} & \multirow[t]{3}{*}{Pressure Drop Code} \\
\hline Range & & & \multicolumn{2}{|l|}{Terminals} & \multicolumn{2}{|c|}{Cable} & \\
\hline Litres/m & & & 3/8" NPT & G 3/8" & 3/8" NPT & G 3/8" & \\
\hline .5-5 & 6900 & \(58-575 \mathrm{~Hz}\) & 173931 & 173936 & 173931-C & 173936-C & \\
\hline 1-10 & 3300 & \(55-550 \mathrm{~Hz}\) & 173932 & 173937 & 173932-C & 173937-C & A \\
\hline 1-15 & 4600 & \(76-1150 \mathrm{~Hz}\) & 173933 & 173938 & 173933-C & 173938-C & \\
\hline 1-15 & 2200 & \(37-550 \mathrm{~Hz}\) & 173934 & 173939 & 173934-C & 173939-C & \\
\hline 2-30 & 1000 & \(33-500 \mathrm{~Hz}\) & 173935 & 173940 & 173935-C & 173940-C & \\
\hline
\end{tabular}
- Consult Sales Office if there is a possibility of particles in the flow stream.

FT-110 Accessories
\begin{tabular}{l|c}
\hline Description & Part Number \\
\hline Mating connector w/1m, 3 conductor, PVC pigtail leads & 173941 \\
Mating connector w/3m, 3 conductor, PVC pigtail leads & 173942 \\
\hline
\end{tabular}

\section*{Dimensions (in mm)}

\section*{Wiring (Integral Cable in brackets)}

Pressure Drop - Typical

Conversions

\section*{LEVEL}
\& FLOW
\begin{tabular}{lll}
\multicolumn{2}{c}{ Temperature Conversion } & \\
\begin{tabular}{lll}
\({ }^{\circ} \mathrm{F}\) to \({ }^{\circ} \mathrm{C}\) & \(=\) & \(\left({ }^{\circ} \mathrm{F}-32\right) \times 0.556\) \\
\({ }^{\circ} \mathrm{C}\) to \({ }^{\circ} \mathrm{F}\) & \(=\) & \(\left(1.8 \times{ }^{\circ} \mathrm{C}\right)+32\) \\
\hline KELIIN & \(=\) & \({ }^{\circ} \mathrm{C}+273.15\) \\
\hline RANKLINE & \(=\) & \({ }^{\circ} \mathrm{F}+459.67\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Bars - (bar)}
\begin{tabular}{|c|c|c|}
\hline x 100 & \(=\) & Kilopascals (kPa) \\
\hline x 14.504 & = & Pounds-force per square inch (psi) \\
\hline x 33.52 & = & Feet of water (\(\mathrm{tHH}_{2} \mathrm{O}\)) at \(20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\) \\
\hline x 29.53 & = & Inches of mercury (in Hg) at \(0^{\circ} \mathrm{C}\) \\
\hline x 1.0197 & \(=\) & Kilograms-force per square centimeter (kg/cm²) \\
\hline x 0.98692 & \(=\) & Atmospheres (atm) sea-level standard \\
\hline \(\times 1.0443\) & = & Tons-force per square foot (tonf/tt²) \\
\hline x 750.06 & = & Torr (torr) (\(=\mathrm{mmHg}\) at \(0^{\circ} \mathrm{C}\)) \\
\hline
\end{tabular}

\section*{Litres - (1)}
\begin{tabular}{lll}
\(\times \mathbf{x 0 0 0}\) & \(=\) & Cubic centimetres \(\left(\mathrm{cm}^{3}\right)\) \\
\hline\(\times \mathbf{0 . 0 3 5 3 1 5}\) & \(=\) & Cubic feet \((\mathrm{tt} 3)\) \\
\(\times \mathbf{x 1 . 2 0 4}\) & \(=\) & Cubic inches \(\left(\mathrm{in}^{3}\right)\) \\
\(\times \mathbf{x 1 . 3 0 8 \times 1 0 ^ { 3 }}\) & \(=\) & Cubic yards (yd3) \\
\(\times \mathbf{0 . 2 6 4 2}\) & \(=\) & U.S gallons (U.S. gal) \\
\(\times \mathbf{x 0 . 2 2 0}\) & \(=\) & Imperial gallons (imp gal) \\
& &
\end{tabular}

Inches of water - in \(\mathrm{H}_{2}\) at \(20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)\)
\begin{tabular}{|c|c|c|}
\hline x 0.2487 & = & Kilopascals (kPa) \\
\hline \(\times 2.487 \times 10-3\) & = & Bars (bar) \\
\hline x 0.07342 & = & Inches of mercury (in Hg) at \(0^{\circ} \mathrm{C}\) \\
\hline \(\times 2.535 \times 10-3\) & = & Kilograms-force per square centimeter (kg/cm²) \\
\hline \(\times 0.5770\) & = & Ounces-force per square foot (ozt/ft²) \\
\hline x 5.193 & = & Pounds - force per square foot (\(1 \mathrm{bf} / \mathrm{ft}^{2}\)) \\
\hline x 0.03606 & = & Pounds - force per square inch (psi) \\
\hline x \(2.454 \times 10-3\) & = & Standard atmospheres \\
\hline
\end{tabular}

\section*{Cubic feet (ft \({ }^{3}\))}
\begin{tabular}{lll}
\(\frac{\mathbf{x 0 . 0 2 8 3 2}}{}\) & \(=\) & Cubic metres \(\left(\mathrm{m}^{3}\right)\) \\
\hline\(\times \mathbf{2 . 8 3 2 \times 1 0 - 2}\) & \(=\) & Cubic centimetres \(\left(\mathrm{cm}^{3}\right)\) \\
\hline\(\times \mathbf{1 7 2 8}\) & \(=\) & Cubic inches \(\left(\mathrm{in}^{3}\right)\) \\
\hline\(\times \mathbf{0 . 0 3 7 0 4}\) & \(=\) & Cubic yards (yd3) \\
\hline \(\mathbf{x 7 . 4 8 1}\) & \(=\) & U.S gallons (U.S. gal) \\
\hline\(\times \mathbf{6 . 2 2 9}\) & \(=\) & Imperial gallons (imp gal) \\
\(\times \mathbf{x 2 8 . 3 2}\) & Litres (1) \\
\hline
\end{tabular}

International
\begin{tabular}{lll}
\(\mathbf{1}\) inch & \(=\) & 25.4 mm \\
\hline Standard gravity & \(=\) & \(9.80665 \mathrm{~m} / \mathrm{sec}^{2}\) \\
\hline \(\mathbf{1}\) atmosphere & \(=\) & 1013.25 mbar \\
\hline \(\mathbf{1}\) pound mass & \(=\) & 453.59237 gm \\
\hline
\end{tabular}

\section*{Dielectric Constants}
\begin{tabular}{|c|c|c|c|}
\hline Common Name & State & Degrees C / F & Dielectric Constant \\
\hline Acetic Acid & Liquid & 20 / 68 & 6.15 \\
\hline Acetone & Liquid & \(27 / 80\) & 20.7 \\
\hline Ammonia & Liquid & -1/30 & 22.4 \\
\hline Aniline & Liquid & \(20 / 68\) & 7.3 \\
\hline Aviation Spirit (100 Octane) & Liquid & \(25 / 77\) & 3 \\
\hline Benzene & Liquid & \(20 / 68\) & 2.284 \\
\hline Bitumen & Liquid & & 3.5 \\
\hline Bromine & Liquid & \(20 / 68\) & 3.09 \\
\hline Butanol-1 & Liquid & \(25 / 77\) & 17.1 \\
\hline Butyl Acetate & Liquid & 20 / 68 & 5.01 \\
\hline Carbon Tetrachloride & Liquid & \(25 / 77\) & 2.23 \\
\hline Castor Oil, Hydrogenated & Liquid & \(27 / 80\) & 10.3 \\
\hline Chlorine & Liquid & \(0 / 32\) & 2 \\
\hline Chlorobenzene & Liquid & 25/77 & 5.621 \\
\hline Chloroform & Liquid & \(0 / 32\) & 5.5 \\
\hline Cyclohexane & Liquid & 25/77 & 2.02 \\
\hline Dichloromethane & Liquid & \(20 / 68\) & 9.08 \\
\hline Diethyl Ketone & Liquid & \(14 / 58\) & 17.3 \\
\hline Dimethyl Sulphate & Liquid & \(20 / 68\) & 55 \\
\hline Ethanol & Liquid & \(25 / 77\) & 24.3 \\
\hline Ethyl Acetate & Liquid & \(20 / 68\) & 6.4 \\
\hline Ethyl Benzene & Liquid & \(20 / 68\) & 2.412 \\
\hline Ethyl Bromide & Liquid & 18/64 & 4.9 \\
\hline Ethyl Ether & Liquid & \(20 / 68\) & 4.34 \\
\hline Ethylene Chloride & Liquid & \(20 / 68\) & 10.5 \\
\hline Ethylene Glycol & Liquid & \(25 / 77\) & 37.7 \\
\hline Formic Acid & Liquid & 21/69.8 & 57 \\
\hline Gasoline & Liquid & & 2-2.2 \\
\hline Glycerine & Liquid & & 47.0-68.0 \\
\hline Glycerol & Liquid & 77 & 42.5 \\
\hline Glycol & Liquid & 68 & 42.2 \\
\hline Hexane & Liquid & 68 & 1.89 \\
\hline Hexanol & Liquid & 76 & 13.3 \\
\hline Hydrazine & Liquid & 68 & 52.9 \\
\hline Hydrogen Bromide & Liquid & 76 & 3.8 \\
\hline Hydrogen Sulphide & Liquid & 48 & 5.8 \\
\hline Isobutyl Alcohol & Liquid & 68 & 18.7 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Common Name & State & Degrees C / F & Dielectric Constant \\
\hline Isobutyl Chloride & Liquid & 68 & 7.1 \\
\hline Isopropyl Alcohol & Liquid & 68 & 15.7 \\
\hline Jet Fuel (Military-JP4) & Liquid & 70 & 1.7 \\
\hline Lactic Acid & Liquid & 66 & 19.4 \\
\hline Maleic Anhydride & Liquid & 140 & 51 \\
\hline Methanol & Liquid & 77 & 32.63 \\
\hline Methyl Acetate & Liquid & 68 & 7.3 \\
\hline Methyl Alcohol & Liquid & 68 & 33.1 \\
\hline Methyl Butyl Ketone & Liquid & 62 & 12.4 \\
\hline Methyl Ether & Liquid & 77 & 5.02 \\
\hline Methyl Salicylate & Liquid & 68 & 9 \\
\hline Methyl Thiocyanate & Liquid & 68 & 35.9 \\
\hline Mineral Oil & Liquid & 80 & 2.1 \\
\hline Nitrobenzene & Liquid & 77 & 34.82 \\
\hline Octane & Liquid & 76 & 2.061 \\
\hline Oil, Linseed & Liquid & 55 & 3.4 \\
\hline Oil, Vegetable & Liquid & & 2.5-3.5 \\
\hline Pentanol & Liquid & 77 & 13.9 \\
\hline Petroleum & Liquid & & 1.8-2.2 \\
\hline Phenol & Liquid & 118 & 9.9 \\
\hline Phosgene & Liquid & 71.6 & 4.3 \\
\hline Phosphorus & Liquid & 93.2 & 4.1 \\
\hline Phosphorus Trichloride & Liquid & 77 & 3.4 \\
\hline Propanol-1 & Liquid & 77 & 20.1 \\
\hline Propanol-2 & Liquid & 77 & 18.3 \\
\hline Pyridine & Liquid & 68 & 12.5 \\
\hline Sulphur & Liquid & 448 & 3.48 \\
\hline Sulphur Dioxide & Liquid & 32 & 15.6 \\
\hline Sulphur Trioxide & Liquid & 70 & 3.6 \\
\hline Sulphuric Acid & Liquid & 68 & 84 \\
\hline Tetrachloroethylene & Liquid & 77 & 2.3 \\
\hline Tetrahydrofuran & Liquid & 86 & 7.25 \\
\hline Toluene & Liquid & 68 & 2.4 \\
\hline Trichloroacetic Acid & Liquid & 140 & 4.6 \\
\hline Trichloroethylene & Liquid & 61 & 3.4 \\
\hline Water & Liquid & 68 & 80.4 \\
\hline Xylene & Liquid & 68 & 2.4 \\
\hline
\end{tabular}
- Contact Sales Office for additional dielectric constants

Also available from Gems
Pressure Transducers
Gems Sensors is the leading European manufacturer of high performance sputtered thin
film and cost effective CVD pressure transducers and transmitters. With sales of over a
million pressure sensors, Gems' products are renowned throughout the world for their
exceptional levels of quality, reliability and long term stability, in applications in the water,
power machinery and aircraft industries. Gems' pressure sensors are manufactured in our
purpose built class 100 clean room using CAD/CAM technology, laser welding, mass
spectrometry and special brazing equipment.

\section*{CVD}
- Cost effective
- Large volumes available
- Accuracy \(+/-0.15 \%\)
- Large choice of electrical and pressure connections
- Short lead time

\section*{Thin Film}

Thin film transducers and transmitters offer the ultimate combination of accuracy, stability and repeatability. The 4000 series are accurate to \(0.08 \%\) and are rated for 25 years MTBF.
- High performance
- Class leading accuracy \(+/-0.08 \%\)
- High stability
- Large number of options
- Choice of material

\section*{Level Measurement - Pressure Based}

Continuous level measurement for waste and water treatment and tank levels.
- Five year anti-water ingress warranty
- Lightning protection
- Zero maintenance
- No calibration needed

\section*{Pressure Switches}

Various selections for OEM variants to process applications.
- Wide variety
- OEM design service

Specialist Products

Tank Level Transmitters

Dip Tape Visual Level Indicators

\section*{United Kingdom}

\section*{Gems Sensors}

Lennox Rd
Basingstoke
Hants. RG22 4AW
Tel: +44 (0)1256 320244
Fax: +44 (0)1256 473680
Email: sales@gems-sensors.co.uk

\section*{France}

Gems Sensors
Z.I. des Mardelles

94-106, rue Blaise Pascal
93602 Aulnay-sous-Bois Cédex
Tel: +33 (0)1.48.19.99.70
Fax: +33 (0)1.48.19.99.79
Email: gems-sensors@wanadoo.fr

\section*{Germany*}

Gems Sensors
Vogelsbergstr. 47
D 63674 Altenstadt
Tel: + 49 6047-9611-0
Fax: + 49 6047-9611-11
Email: vertrieb@gems-sensors.de

\section*{Italy*}

Gems Sensors
Via Leonardo da Vinci, 45/47
20020 Lainate (MI)
Tel: +39 0293300154
Fax: +39 0293300150
Email: gemsitaly@tin.it

\section*{North America}

Gems Sensors
One Cowles Road
Plainville
CT 06062-1198
Tel: +1 8607473000
Fax: +1 8607474244
Email: info@gemssensors.com

Visit our website at www.gemssensors.com

Due to a policy of continuous development we reserve the right to amend specifications without prior notice.

\section*{Gems Sensors is a A Member of the}

Danaher Corporation```

[^0]: * These switches are not for use in freezing liquid
 + See Page 10 for Wiring Diagrams
 * These Switches are not for use in freezing liquid
 + See Page 10 for Wiring Diagrams

[^1]: yn'0э's」osues-suə6'MMM

 Normally Open
 Normally Closed

 How To Order
 Specify Opto-Pak ${ }^{\text {TM }}$ Controllers by Part Number

 | Description | Part Number |
 | :---: | :---: |
 | Open Board | 162171 |
 | IP65 Enclosure | $\mathbf{1 7 7 7 1 4}$ |

[^2]: * Level switch units with 50 VA and 100 VA switches are not U.L. recognised or CSA approved.

